#### Des ondes gravitationnelles à la théorie des cordes: Quelle théorie de la gravitation?

Pierre Vanhove



Lycée Châtelet, Douai, France 13 novembre 2018

## Scolarité au lycée Albert Châtelet



## Scolarité au lycée Albert Châtelet



# Première partie l

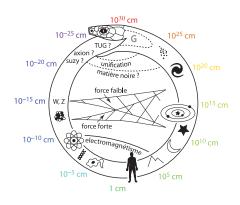
## La gravitation selon Albert Einstein



Ça a été la plus heureuse idée de ma vie

Albert Einstein

# L'importance de la gravité




I've been noticing gravity since I was very young. (Cameron Diaz)



Painting is so poetic, while sculpture is more logical and scientific and makes you worry about gravity. (Damien Hirst)

#### La force de gravité est universelle



• elle agit sur tout type de matière et d'énergie  $E = mc^2$ 

- Elle est toujours attractive
- C'est la force connue de la nature la plus faible

Deux forces règnent sur l'univers : lumière et pesanteur. (Simone Weil, « La pesanteur et la grâce »)

#### Loi universelle de la chute des corps

En 1638 Galilée énonce que tous les corps tombent de la même manière quelque soit leur poids

Vérification sur la lune de la loi de la chute des corps par les astronautes de la mission Apollo 15

## Le Principe d'équivalence

Conséquence de l'égalité entre masse grave et masse inerte

$$\vec{a} = \frac{m_{\text{grave}}}{m_{\text{inerte}}} \vec{g}$$

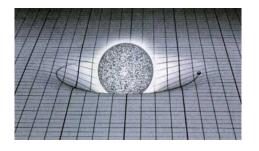


#### L'égalité est vérifiée à l'ordre

$$\left| \frac{m_{\text{inerte}} - m_{\text{grave}}}{m_{\text{grave}}} \right| \simeq 10^{-13}$$

La collaboration française MICROSCOPE a lancé le 25 avril 2016 un satellite pour tester cette relation à l'ordre de 10<sup>-15</sup>

#### Le Principe d'équivalence : l'idée merveilleuse d'Einstein






J'étais assis sur ma chaise au Bureau Fédéral de Berne... Je compris que si une personne est en chute libre, elle ne sentira pas son propre poids. J'en ai été saisi. Cette pensée me fit une grande impression. Elle me poussa vers une nouvelle théorie de la gravitation. (Einstein 1907) En novembre 1915, Albert Einstein présente sa théorie de la gravitation : la relativité générale

Il a profondément changé notre vision de l'espace et du temps

## La gravitation comme courbure de l'espace-temps



L'espace tout entier est la scène du champ gravitationnel :

un corps n'est pas attiré par un autre corps mais se déplace librement dans un espace-temps courbé

Les corps suivent des mouvements naturels en réagissant aux propriétés de l'espace-temps.

#### Voir la gravitation

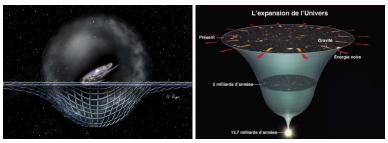
Einstein prédit que la lumière est déviée par le Soleil



Confirmé par Eddington et Dyson avec l'éclipse de 1919

Lentilles gravitationnelles induites par le groupe de galaxies MACSJ0717.5+3745 (télescope Hubble)

#### Voir la gravitation


#### Einstein prédit que la lumière est déviée par le Soleil



Curieuse illustration dans « Les merveilles des sciences et l'industrie » (Hachette, 1926), où soleil *repousse* la lumière ©

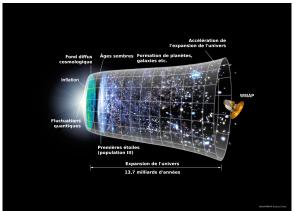
#### La face obscure de l'Univers

Matière noire et énergie noire inconnues, invisibles, peupleraient massivement notre Univers observable



L'énergie noire rappelle la *quintessence*, matière incréée, inaltérable, invisible et omniprésente, dont Aristote remplissait les cieux

L'énergie noire est une sorte d'« antigravité »


#### La gravitation et notre Univers observé

# 69.2% Energie Sombre

#### 4.9% Matière ordinaire

#### Héritage scientifique de la mission Planck

- ▶ 4.9% matière ordinaire (particules, ...)
- ≥ 25.9% matière noire (autour des galaxies,...)
- ▶ 69.2% énergie noire (moteur de l'expansion de l'univers)



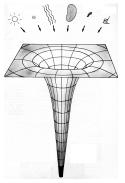


C'est la force fondamentale la moins bien comprise

# Deuxième partie II

## Les ondes gravitationnelles






Henri Dutilleux (1916 - 2013)

# Les objets macroscopiques les plus parfaits



The most perfect macroscopic objects there are in the universe: the only elements in their construction are our concepts of space and time (S. Chandrasekhar)



- Caractérisés par la géométrie extérieure
  - Masse M
  - $\circ$  Moments angulaires  $\vec{J}$
  - Charges électriques Q
- Absorbent toute la matière et toute énergie
  - On ne peut pas écranter leur attraction
- Singularité au centre du trou noir cachée par un horizon des événements

#### Einstein doute de la réalité des trous noirs

#### ON A STATIONARY SYSTEM WITH SPHERICAL SYMMETRY CONSISTING OF MANY GRAVITATING MASSES

By Albert Einstein (Received May 10, 1939)

If one considers Schwarzschild's solution of the static gravitational field of spherical symmetry

(1) 
$$ds^2 = -\left(1 + \frac{\mu}{2r}\right)^4 (dx_1^2 + dx_2^2 + dx_3^3) + \left(\frac{1 - \frac{\mu}{2r}}{1 + \frac{\mu}{2r}}\right)^2 dt^2$$

sents the gravitating mass.)

There arises the question whether it is possible to build up a field containing such singularities with the help of actual gravitating masses, or whether such regions with vanishing  $q_{ij}$  do not exist in cases which have physical reality. Schwarzschild himself investigated the gravitational field which is produced by an incompressible liquid. He found that in this case, too, there appears a region with vanishing  $q_{ij}$  if only, with given density of the liquid, the radius of the field-producing sphere is chosen large enough.

This argument, however, is not convincing; the concept of an incompressible inquid is not compatible with relativity theory as elastic waves would have to travel with infinite velocity. It would be necessary, therefore, to introduce a compressible liquid whose equation of state excludes the possibility of sound

- La singularité des trous noirs est-elle réelles ou fictive?
- Comment la matière peut-elle créer un trou noir?
- ► En 1939 Einstein argumente que les trous noirs sont *incompatibles* avec la réalité *physique* de sa théorie de la gravitation (Annal of Mathematics 40 4 (1939) 922-936)



Il faudra attendre les années 1950 et les travaux de Robert Oppenheimer, Snyder et John Wheeler pour que les trous noirs soient vus comme des objets astrophysiques observables dans l'Univers

#### Les trous noirs : le test ultime de la relativité



DOCTOR: Short version. Because of the black hole, time is moving faster at this end of the ship than the other. It's all about gravity. Gravity slows down time.

(World Enough And Time-Doctor Who, episode 275a)

La théorie d'Einstein est très bien confirmée en champ faible autour de la Terre et dans le système solaire mais on a peu de test en champ fort proche d'un trou noir

#### Combien de trous noirs?



Science News Letter for January 18, 1964

ASTRONOMY

## "Black Holes" in Space

The heavy densely packed dying stars that speckle space may help determine how matter behaves when enclosed in its own gravitational field—By Ann Ewing

SPACE may be peppered with "black holes."

Modern tools, such as telescopes on an orbiting space platform, may be used to orbiting space platform, may be used to orbiting space platform.

- On estime à 100 millions de trou noir d'une masse solaire dans notre galaxie
- La région de l'Univers visible de la Terre contient environ 100 milliard de galaxies
- On estime a 100 milliard le nombre de trou noir supermassifs (millons ou de milliard de masse solaire) dans l'univers
- Le trou noir connu le plus proche est à 1600 années lumières de la Terre

#### Voir les trous noirs

Sagittarius A\* au centre de notre galaxie d'une masse  $M_{\odot}$  de 4.1 millons de masses solaires  $M_{\odot}$ 



Vu en observant la matière attirée par le trou noir ou par la déformation des étoiles et effet de lentilles gravitationnelles

## Einstein et les ondes gravitationnelles

En 1936 dans un article article intitulé « Do Gravitational Waves Exist? » Il argumente contre la réalité physique des ondes.

Cet article rejeté par Physical Review apparaitra dans le Journal of the Franklin Institute sous le titre « On Gravitational Waves »

#### ON GRAVITATIONAL WAVES.

 $\mathbf{B}\mathbf{Y}$ 

A. EINSTEIN and N. ROSEN.

#### ABSTRACT.

The rigorous solution for cylindrical gravitational waves is given. For the convenience of the reader the theory of gravitational waves and their production, already known in principle, is given in the first part of this paper. After encountering relationships which cast doubt on the existence of rigorous solutions for undulatory gravitational fields, we investigate rigorously the case of cylindrical gravitational waves. It turns out that rigorous solutions exist and that the problem reduces to the usual cylindrical waves in euclidean space.

## Einstein et les ondes gravitationnelles

En 1936 dans un article article intitulé « Do Gravitational Waves Exist? » Il argumente contre la réalité physique des ondes.

Cet article rejeté par Physical Review apparaitra dans le Journal of the Franklin Institute sous le titre « On Gravitational Waves »

#### ON GRAVITATIONAL WAVES.

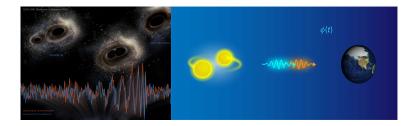
BY

A. EINSTEIN and N. ROSEN.

#### ABSTRACT.

The rigorous solution for cylindrical gravitational waves is given. For the convenience of the reader the theory of gravitational waves and their production, already known in principle, is given in the first part of this paper. After encountering relationships which cast doubt on the existence of rigorous solutions for undulatory gravitational fields, we investigate rigorously the case of cylindrical gravitational waves. It turns out that rigorous solutions exist and that the problem reduces to the usual cylindrical waves in euclidean space.

Einstein posait la question importante : Sont-elles des manifestations de l'espace-temps ou des ondes mathématiques de coordonnées?


## Danse des trous noirs : Ondes gravitationnelles



Le 14 septembre 2015 détection d'ondes gravitationnelles émises par un système binaire de trous noirs par LIGO



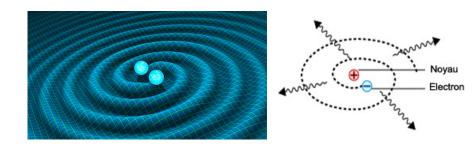
#### Une nouvelle fenêtre d'observation sur l'Univers



- Première détection de la dynamique des trous noirs
- Nouvelle fenêtre multimessagers sur notre Universe
  - fusion étoiles à neutrons (GW170817) : signaux GW, X-rays,  $\gamma$ , ...
  - Contraint fortement des modèles alternatif de la gravitation
- On pourrait avoir jusqu'à une détection par jour de coalescence de trous noirs

# Troisième partie III

#### Gravitation et Mécanique quantique

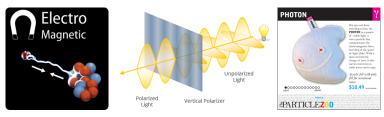



My subject is the quantum theory of gravity. My interest in it is primarily in the relation of one part of nature to another.

There's a certain irrationality to any work in gravitation, so it's hard to explain why you do any of it; ...

Richard Feynman Jablonna, 1962

## Gravitation et mécanique quantique

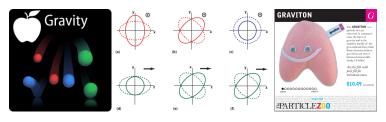



#### En 1916 Einstein écrit

À cause des mouvements intra-atomiques, l'atome doit rayonner (...) de l'énergie gravitationnelle, même en très faibles quantités.

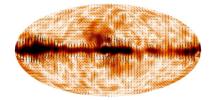
Comme cela ne peut être le cas dans la nature, il apparaît alors que la théorie guantique doit modifier (...) la nouvelle théorie de la gravitation.

## Quantum de lumière : Le photon



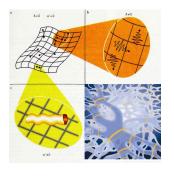

#### Le photon est la particule des ondes électromagnétiques

$$\gamma: \qquad \epsilon_u^+, \qquad \epsilon_u^-, \qquad \text{masse} = \text{o}$$




## Quantum d'espace-temps: Le graviton




Le graviton est la particule des ondes d'espace-temps

$$h: \quad \epsilon_{\mu\nu}^{++}, \quad \epsilon_{\mu\nu}^{--}, \quad \text{masse} = 0$$

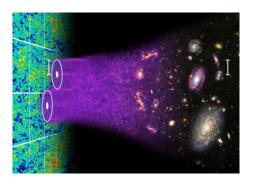


#### La théorie des cordes

La théorie des cordes unifie la mécanique quantique et la théorie de la gravitation d'Einstein



La taille caractéristique des cordes est l'échelle de Planck  $\ell_P \simeq 1.6\,\mathrm{10^{-35}} m$ 

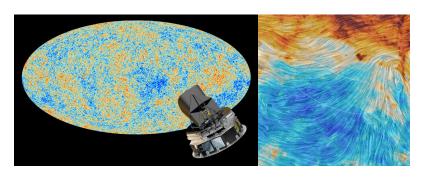

# Quelques instants après le Big Bang, la théorie des cordes dominerait l'évolution de l'univers



Selon Gabriele Veneziano il existerait une phase de l'Univers avant le Big Bang

## Ondes gravitationnelles primordiales

Les ondes gravitationnelles quantiques polarisent le fond cosmique diffus et dépendent des effets quantique de l'univers primordial




## Ondes gravitationnelles primordiales



## Ondes gravitationnelles primordiales

Malgré de nombreux espoirs encore aucune détection



Expérience Planck 2015

## Rayonnement de trous noirs



En 1975 il a découvert qu'un trou noir émet un rayonnement quantique dues aux fluctuations quantiques au voisinage de son horizon

Le 3/10/2018, dans un article (posthume) il développe l'idée que les trous noirs sont entourés d'une radiation quantiques « Black hole and soft hair »

## Les trous noirs : la théorie poussée à sa limite



En questionnant la nature des trous noirs Stephen Hawking a profondément changé la manière de penser la relation entre gravitation et mécanique quantique

L'intérieur du trou noir est un modèle pour la cosmologie. Résoudre ces questions permettra de progresser sur des questions fondamentales de cosmologie primordiale

We remember Isaac Newton for answers, we remember Fawking for questions. (Kip Thorne)