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We report on the analytic evaluation of the hadronic vacuum polarisation in two-flavor chiral
perturbation theory to three loops [1] that’s relevant for the calculation of the anomalous magnetic
moment of the muon and electron. The three-loop amplitude gets contributions from polyloga-
rithms and six elliptic master integrals, all derivable from the single-mass two-point sunset integral
via differentiation or integration. Our result is intended to serve as a starting point for phenomeno-
logical studies, as well as the computation of finite-volume corrections in lattice QCD.
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1. Introduction

The calculation of the magnetic moment of the electon is one of the crowning achievements of
Quantum Field Theory. The measurement and theoretical predictions agree to about one part in a
trillion [2]. Moreover, the anomalous contribution magnetic moment of the muon,

®𝜇𝜇 = ±𝑔𝜇
𝑒

2𝑚𝜇

®𝑆; 𝑎𝜇 =
(𝑔 − 2)𝜇

2
, (1)

is sensitive to possible new states beyond the Standard Model, which provides an interesting way to
probe the new physics.

To compare theory and experiment, highly technical calculations are involved. QED calcula-
tions have to be performed at high order, and contributions from hadronic physics become important
at such high precision. At the needed precision all three interactions and all standard model particles
contribute to the anomalous magnetic moment 𝑎𝜇, which can be decomposed into a QED 𝑎

QED
𝜇 , an

hadronic 𝑎hadronic
𝜇 and an electro-weak 𝑎EW

𝜇 contribution

𝑎SM
𝜇 = 𝑎

QED
𝜇 + 𝑎hadronic

𝜇 + 𝑎EW
𝜇 , (2)

where the terms can be estimated to be of the following orders of magnitude [3]
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FIG. 13 Representative diagrams contributing to aµ. First column: lowest-order diagram (upper) and first order QED
correction (lower); second column: lowest-order hadronic contribution (upper) and hadronic light-by-light scattering
(lower); third column: weak interaction diagrams; last column: possible contributions from lowest-order supersymme-
try.

The muon magnetic anomaly has recently been measured for positive and negative muons with a relative
precision of 5 × 10−7 by the E821 collaboration at Brookhaven National Laboratory (Muon (g − 2) Coll.,
2004). Combined with the older, less precise results from CERN (Bailey et al., 1977), and averaging over
charges, gives

aexp
µ = (11 659 208.0 ± 5.8) × 10−10 . (60)

Although the accuracy is 200 times worse than aexp
e , aµ is about m2

µ/m2
e # 40, 000 times more sensitive to new

physics and hence a better place (by about a factor of 200) to search for a deviation from the SM expectation.
Of course, strong and electroweak contributions to aµ are also enhanced by m2

µ/m2
e relative to ae; so, they

must be evaluated much more precisely in any meaningful comparison of aSM
µ with Eq. (60). Fortunately, the

recent experimental progress in aexp
µ has stimulated much theoretical improvement of aSM

µ , uncovering errors
and inspiring new computational approaches along the way, among these the use of hadronic τ decays.

It is convenient to separate the SM prediction for the anomalous magnetic moment of the muon into its
different contributions,

aSM
µ = aQED

µ + aweak
µ + ahad

µ , (61)

where aQED
µ = (11 658 472.0 ± 0.2) × 10−10 is the pure electromagnetic contribution (see (Czarnecki and

Marciano, 1999; Hughes and Kinoshita, 1999) and references therein),7 aweak
µ = (15.4 ± 0.1 ± 0.2) × 10−10,

with the first error being the hadronic uncertainty and the second due to the Higgs mass range, accounts for
corrections due to exchange of the weakly interacting bosons up to two loops (Czarnecki et al., 2003) (see
third column in Fig. 13). The term ahad

µ can be further decomposed into

ahad
µ = ahad,LO

µ + ahad,HO
µ + ahad,LBL

µ , (62)

where ahad,LO
µ is the lowest-order contribution from hadronic vacuum polarization and ahad,HO

µ the correspond-
ing higher-order part (Section VI.E). At the 3-loop level in α, the so-called hadronic light-by-light (LBL)

7 An improved calculation including all mass-dependent α4 QED contributions has been published recently with a slightly differ-

ent result (Kinoshita and Nio, 2004): aQED
µ = 116 584 719.58(0.02)(1.15)(0.85) × 10−11. Here, 0.02 and 1.15 are uncertainties

in the α4 and α5 terms, and 0.85 is from the uncertainty in α measured by atom interferometry.
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µ with Eq. (60). Fortunately, the
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ahad
µ = ahad,LO

µ + ahad,HO
µ + ahad,LBL

µ , (62)

where ahad,LO
µ is the lowest-order contribution from hadronic vacuum polarization and ahad,HO

µ the correspond-
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e , aµ is about m2
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physics and hence a better place (by about a factor of 200) to search for a deviation from the SM expectation.
Of course, strong and electroweak contributions to aµ are also enhanced by m2
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e relative to ae; so, they

must be evaluated much more precisely in any meaningful comparison of aSM
µ with Eq. (60). Fortunately, the

recent experimental progress in aexp
µ has stimulated much theoretical improvement of aSM

µ , uncovering errors
and inspiring new computational approaches along the way, among these the use of hadronic τ decays.

It is convenient to separate the SM prediction for the anomalous magnetic moment of the muon into its
different contributions,
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with the first error being the hadronic uncertainty and the second due to the Higgs mass range, accounts for
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third column in Fig. 13). The term ahad

µ can be further decomposed into
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µ is the lowest-order contribution from hadronic vacuum polarization and ahad,HO
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7 An improved calculation including all mass-dependent α4 QED contributions has been published recently with a slightly differ-

ent result (Kinoshita and Nio, 2004): aQED
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ent result (Kinoshita and Nio, 2004): aQED
µ = 116 584 719.58(0.02)(1.15)(0.85) × 10−11. Here, 0.02 and 1.15 are uncertainties

in the α4 and α5 terms, and 0.85 is from the uncertainty in α measured by atom interferometry.

?(a) The hadronic vaccuum polarisation

had

=
π+

π−
+. . .

(b) The pionic (𝜋± and 𝜋0) contributions to the hadronic
vaccuum polarisation

Figure 1: Contribution to 𝑎HPV
𝜇 .

Therefore, precision in (𝑔 − 2)𝜇 demands theoretical uncertainties below 10−10 in the hadronic
contribution 𝑎hadronic

𝜇 .
At low virtualities, the effect is dominated by non-perturbative QCD effects, in particular pion

dynamics. Therefore, from now we will focus on the hadronic contributions at very low energy.
That contribution is subleading but small virtualities is where the most uncertainty arise. We work
with two-flavor chiral perturbation theory (ChPT) which is a low-energy effective field theory for
QCD [6]

LQCD(𝑞, 𝑞, 𝐴) → LChPT(𝑈, 𝜕𝜇𝑈, · · · ) =
𝐹2

0
4

Tr
(
𝜕𝜇𝑈𝜕𝜇𝑈†

)
+ higher-order. (7)

The pions enter in the parametrisation of 𝑈 := exp
(
𝑖 𝜋𝑎𝜎𝑎

𝐹0
√

2

)
where 𝐹0 is the bare pion decay

constant, and 𝜎𝑖 the 𝑆𝑈 (2) generators,

LChPT = LChPT
𝑂 (𝑝2 ) + LChPT

𝑂 (𝑝4 ) + LChPT
𝑂 (𝑝6 ) + LChPT

𝑂 (𝑝8 ) + · · · (8)

The EFT lagrangian is ordered in powers of the momentum, and at each order arise new low-energy
constants (from UV counter-terms) that are determined by matching physical quantities [7–10].

The basic quantity of interest is the vacuum polarization of fig. 1b,

Π𝜇𝜈 (𝑞) ≔ 𝑖

∫
𝑑4𝑥 𝑒𝑖𝑞𝑥 ⟨0

��𝑇 {
𝑗 𝜇 (𝑥) 𝑗 𝜈 (0)

}��0⟩ , (9)

where 𝑗𝜇 (𝑥) is the electromagnetic current. The hadronic vacuum polarisation (HVP) consists
of the hadronic contributions to Π𝜇𝜈 (𝑞), i.e. those that arise from quarks and gluons should be
computed in QCD. Here we use two-flavor ChPT to compute the pion contributions to HVP taht
we call Π𝜇𝜈 (𝑞2) in the following for simplicity.

Gauge invariance imposes that the longitudinal part of Π𝜇𝜈 (𝑞) vanishes and only the transverse
part is non-vanishing:

Π𝑇 (𝑞2) :=
1

1 − 𝑑

[
𝜂𝜇𝜈𝑞

2 − 𝑞𝜇𝑞𝜈

(𝑞2)2

]
Π𝜇𝜈 (𝑞). (10)

The primary method for computing the hadronic vacuum polarization is lattice QCD, which
suffers from finite volume effects. These effects can be computed in ChPT.

A quick estimation of the contributions to the hadronic vacuum polarisation in perturbation
given in fig. 2 shows that to have control of the theoretical uncertainty from finite volume effects
at a level matching the experimental uncertainty, the finite volume effect of a three-loop (N3LO)
calculation is needed.
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Figure 2: Estimate of the finite-volume effect on 𝑎LO−HVP
𝜇 in a 6 fm box

2. The HVP at N3LO in ChPT

We work in the two-flavor chiral perturbation theory in the isospin limit, describing an SU(2)
triplet of pion fields of mass 𝑀𝜋 coupled to an external, non-dynamic photon field 𝐴𝜇. The structure
of the subtracted vacuum polarisation function in an expansion of ChPT up to next-to-next-to-next-
leading order (N3LO) may be written as an expansion in powers of 𝜉 := 𝑀2

𝜋/(16𝜋2 𝐹2
𝜋) ≈ 0.03,

where 𝐹𝜋 is the pion decay constant:

16𝜋2
(
Π𝑇 (𝑞2) − Π𝑇 (0)

)
= Π̄NLO

𝑇 (𝑡) + 𝜉Π̄NNLO
𝑇 (𝑡) + 𝜉2Π̄N3LO

𝑇 (𝑡) + O(𝜉3) . (11)

Note that on the right-hand side, we write the Π̄’s as dimensionless functions of 𝑡 := 𝑞2/𝑀2
𝜋 .

There is no leading order (LO) tree-level contributions. The first two terms are known from earlier
work [7, 8, 11–13],

Π̄NLO
𝑇 (𝑡) = 2

4 − 𝑡

3𝑡
𝐽
(1) (𝑡) + 4

9
, (12)

Π̄NNLO
𝑇 (𝑡) = 𝑡

[
4 − 𝑡

3𝑡
𝐽
(1) (𝑡) − 1 + 3 log(𝑀2

𝜋/𝜇2)
9

]2
− 4𝑡

[
4 − 𝑡

3𝑡
𝐽
(1) (𝑡) − 1 + 3 log(𝑀2

𝜋/𝜇2)
9

]
𝑙
𝑞

6

− 8𝑡𝑐𝑞56 ,

where we have introduced the bubble function

𝐽
(𝑛) (𝑡) :=

∫ 1

0
𝑑𝑥 log𝑛 [1 − 𝑥(1 − 𝑥)𝑡] . (13)

The result depends low-energy constants (LEC subtracted HVP). The cut of the amplitude at this
order only gives the two pion production channel, e.g. 𝑒+𝑒− → 2𝜋.

The N3LO three-loop order, is new and the topic of the paper [1]. The diagrams contributing
to this order are represented in fig. 3, and the result can be expressed as

Π̄N3LO
𝑇 (𝑡) = Π̄𝐸 (𝑡) + Π̄𝐽 (𝑡) + Π̄𝜁 (𝑡) + Π̄𝑙 (𝑡) + Π̄𝑐 (𝑡) + 𝑡 𝑟

𝑞

1 + 𝑡2 𝑟
𝑞

2 . (14)
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The contribution Π̄𝐸 (𝑡) is given by elliptic functions from the three-loop equal mass sunset inte-
gral [14], derivatives of this integral and integrals of this integral. The contribution Π̄𝐽 (𝑡) is given
by polylogarithms, Π̄𝜁 (𝑡) is a rational function containing 𝜁 (3) and 𝜋2, and finally Π̄𝑙 (𝑡), Π̄𝑐 (𝑡)
contain from the NLO and NNLO low-energy constants.

This is the first evaluation of this contribution at this order in ChPT, and opens the four pions
intermediate state, e.g. 𝑒+𝑒− → 4𝜋. An important aspect of the result is the emergence of non-
trivial algebraic relations between master integrals that are not generated by integration-by-part
identities. These are necessary for renormalisation within the effective theory and ensure that all
divergences can be absorbed into the LECs of the chiral Lagrangian.

Figure 3: The diagrams contributing to N3LO.

3. Physical interpretation

Traditionally, Π𝑇 (𝑞2) is subtracted at 𝑞2 = 0 which corresponds to renormalisazing the elec-
tromagnetic coupling in the Thomson limit. We provide the expressions for Π𝑇 (𝑞2) −Π𝑇 (0) in [1].
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itself is absorbed into a re-definition of LECs (and the electromagnetic coupling renormalisation)
so that Π𝑇 (𝑞2) − Π𝑇 (0) is finite and scale-independent.

Compared to the lower order, the functional form of the N3LO contribution (involving elliptic
integrals) introduces a more intricate momentum dependence. This complexity matters in dispersive
integrals and in lattice interpolation of HVP data, where naive polynomial fits may fail to capture
subtle curvature near thresholds. The three-loop contributions correct both the momentum slope
and the curvature of the function in a calculable way.

From a phenomenological point of view, the calculation provides several practical insights:

• Momentum window design: low-𝑞2 regions are important for integrals such as the electron
and muon 𝑔−2. The three-loop analytic form indicates that these regions cannot be accurately
described by simple polynomials. Fast high-precision evaluations in Python will be released
in [15].

• Finite-volume corrections: this work is an important first step toward precise estimates of
finite-volume effects in lattice calculation of HVP [16].

• Chiral extrapolation: the results serve as a refined baseline for extrapolating lattice results
obtained at heavier pion masses.

• Cross-section: an evaluation of the four-pion production cross-section 𝑒+𝑒− → 4𝜋; the new
low energy constants do not contribute so everything needed is known.

• Error-budgeting: the numerical magnitude of three-loop effects provides an empirical
estimate for the uncertainty associated with truncating the chiral expansion.

4. Conclusion and outlook

From a methodological standpoint, this work also reveals the growing mathematical sophisti-
cation of modern effective field theory calculations. The emergence of elliptic integrals, previously
seen mainly in multi-loop QED and QCD computations, underscores the deep connections between
mathematical physics and phenomenology.

The extension of the HVP calculation to three loops in ChPT opens several avenues:

• Using the analytic results to refine finite-volume correction formulae for lattice HVP simula-
tions.

• Incorporating the elliptic structure into lattice interpolation frameworks and dispersive fits.

• Benchmarking the chiral expansion against lattice data at physical pion masses to test con-
vergence.

This work demonstrates the continuing progress of the theoretical program aiming to match ex-
perimental precision in muon (𝑔 − 2)𝜇 and related observables. Effective field theory, lattice
QCD and phenomenological methods continue to converge toward a unified, quantitatively reliable
description of hadronic effects.
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