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Premiére partie .

Enoncés des petites classes et
des devoirs a la maison






1. PC1 : Interférences et probabilités

Mécanique quantique (PHY 311)
Pierre Vanhove
PC du 15 avril 2015

1.1. Interférences, relation d’incertitude, ondes de matiére

-
ha
—

plague

FIGURE 1. — A gauche : représentation d’un expérience de fentes d’Young. A droite :
une photographie de l'intensité lumineuse sur I’écran montrant le phé-
nomeéne d’interférences.

On réalise une expérience de fentes d’YoungE] en utilisant une onde incidente plane
et monochromatique, de vecteur d’onde k paralléle & un axe Oz et de longueur d’onde
A. La distance entre les deux fentes F} et F5 (chacune paralléle a 'axe Oy) sera notée
a, et la distance entre le plan des fentes et I’écran sera notée D (on notera O'z’ 1'axe
sur I’écran paralléle & Ox). Le repere (O, x,y, z) est orthogonal.E]

1.1.1. Nature ondulatoire des photons

Dans un premier temps on s’intéresse a la nature ondulatoire des photons.

1. Thomas Young (1773-1829).
2. Richard Feynman a qualifié cette expérience de "phenomenon which is impossible . . . to explain
in any classical way, and which has in it the heart of quantum mechanics. In reality, it contains the

only mystery of quantum mechanics." The Feynman Lectures on Physics, Volume III. Massachusetts,
USA : Addison-Wesley



1. PCI1 : Interférences et probabilités

a) En faisant quelques approximations (que l'on justifiera) sur la diffraction par les
deux fentes, montrer que le champ électrique sur I’écran peut s’écrire sous la forme

E = Ey[cos(wt — kL) + cos(wt — kL9)], (1)

ou L1 et Lo sont les distances des fentes F; et F5 au point d’observation sur ’écran.
En déduire la valeur de I'interfrange i en fonction de a, D et A.

b) Donner Iexpression de 'intensité proportionnelle a la valeur moyenne temporelle
(E?):.

On considére maintenant 1’aspect corpusculaire des photons. On va essayer de dé-
terminer par quel chemin le photon est passé. L’écran est supposée mobile le long de
I’axe Ox. On mesure la quantité de mouvement que chaque photon céde a ’écran lors
de son passage par une des fentes.

¢) Quelle est la quantité de mouvement des photons incidents ?

d) Calculer I'impulsion pg(gl) (respectivement pc(f)) transmise a la plaque si le photon

&)

détecté en 2’ est passé par la fente F (respectivement Fy). Exprimer |p§;1) —p
en fonction de a, D et .

e) Quelle condition doit-on imposer a 'incertitude Ap, sur 'impulsion de la plaque si
I’on veut pouvoir séparer les deux possibilités précédentes 7 En utilisant la relation
de Heisenberg, AxAp, > h/2, montrer que la position de la plaque P a une
dispersion ou « incertitude » minimale Ax que I’on calculera et que ’'on comparera
a l'interfrange. Conclusion ?

1.1.2. Ondes de matiére

[ détecteur

L=64cm I'=6icm

FIGURE 2. — A gauche : photographie du dispositif expérimental (La Recherche 247,
oct. 1992). A droite : schéma de principe de I’expérience.

On s’intéresse maintenant aux ondes de matiéres. En 1991, O. Carnal et J. Mlynek
ont réalisé une expérience de fentes d’Young réalisée avec des atomes d’hélium 4.E|

3. O. Carnal et J. Mlynek, “Young’s double-slit experiment with atoms : A simple atom interfe-



1.2. Loi de désintégration exponentielle

f) Pour les ondes de matiére, il faut remplacer la longueur d’onde optique A par la
longueur d’onde de de Broglie A\jg. Les atomes du jet initial ont une vitesse de
v =9.710%m/s. Calculer la longueur d’onde \yp.

g) Quel est Uinterfrange mesurée dans cette expérience, sachant que D = 64cm et
a=8um?

Valeurs numériques : Un atome d’hélium 4 a pour masse m .4 ~ 41.661 10727 kg.
La constante de Planck h ~ 6.631073% J s.

1.2. Loi de désintégration exponentielle

La loi de désintégration exponentielle est trés importante en physique, car elle
repose sur ’hypothése fondamentale que le processus responsable de la désintégration
n’a « pas de mémoire ». La décroissance radioactive suit une loi exponentielle.

Une loi de probabilité sans mémoire se traduit mathématiquement par le fait que
la probabilité conditionnelle P(T" > t; + to|T" > t1) que la particule ne se soit pas
désintégrée aprés une durée t; + to sachant qu’elle ne s’est pas désintégrée aprés une
durée t1, et égale a P(T > t9) la probabilité de ne pas s’étre désintégrée aprés une
durée t5. En termes mathématiques nous avons

P(T>t1+t2‘T>t1):P(T>t2), Viti,t0 > 0. (2)

Insistons sur la différence entre cette propriété d’absence de mémoire et I'indépen-
dance des événements. La relation ([2)) est différente de

P(T>t1+t2‘T>t1):P(T>t2—|—7f1), Vi1,t0 > 0. (3)
Le but de l'exercice est de déterminer la probabilité pour qu’une particule non

encore désintégrée a 'instant ¢y antérieur a ¢, se désintégre entre ¢ et ¢ + dt.

a) Soit F'(t) la probabilité que la durée de vie soit supérieure a ¢t. Montrer que ’ab-
sence de vieillissement implique que

F(tl -+ tz) = F(tl)F(tQ) . (4)

b) Résoudre cette équation pour en déduire que F'(t) est une loi exponentielle.
On définit la densité de probabilitée f(t) := F(t)/ ftzo F(t)dt.

c¢) Calculer la valeur moyenne T := (t—t¢) ot (- - - ) désigne la valeur moyenne. Calcu-
ler la dispersion (ou écart type) (AT)? := ((t—to—T)?). Quelle est I'interprétation
physique 7

rometer”, Phys. Rev. Lett. 66, 2689 (1991). Une autre expérience publiée simultanément est D.W.
Keith et al., “An interferometer for atoms”, Phys. Rev. Lett. 66, 2693 (1991).



1. PC1 : Interférences et probabilités

Cette partie n’est pas traitée en PC

Nous considérons maintenant une autre méthode basée sur une équation différen-
tielle. Cette méthode est celle présentée dans ’appendice A page 430 du livre de cours
de J.-L. Basdevant et J. Dalibard.[]

Soit w(t) la densité de probabilité (inconnue) de l'instant de désintégration de la
particule, vérifiant par définition

oo

/ w(t)dt = 1. (5)

to

C’est-a-dire que la particule se désintégre & un instant ¢ > tg.

d) Donner en fonction de w I'expression de la probabilité p pour que la particule se
désintégre entre tg et t, puis celle de la probabilité ¢ pour que la particule soit
encore présente & I'instant .

e) En écrivant que la probabilité conditionnelle pour que la particule se désinteégre
entre t et t + dt, sachant qu’elle est présente a ¢, est indépendante de ¢, montrer
que

oo
w(t) = wity) / w(u)du. (6)
t
Résoudre cette équation pour en déduire que w(t) = f(t).
Les atomes radioactifs possédent une durée de vie qui suit une loi exponentielle.

f) On appelle demi-vie § le temps au bout duquel la moitié des particules se sont
désintégrées. Donnez ’expression de 0 en fonction de 7.

g) Quelle est la durée de vie moyenne d’un noyau d’iode 131 ayant un demi-vie de
8.02 jours?

Exemples : période des Noyaux radioactifs

noyau uranium 238 | carbone 14 | césium 137
période 7 | 4.510° an 5700 an 30.15 an

1.3. Interféromeétrie et physique fondamentale

Grace a leur grande sensibilité les interféromeétres sont utilisés pour détecter des
signaux astrophysiques et cosmologiques comme le Very Large Telescope au Chili ou
les interférometres de Michelson VIRGO (Pise, Italie), LIGO (USA).

Afin d’éviter d’avoir & utiliser des miroirs de grande taille, qui sont difficiles et
colitent chers a réaliser, on utilise un ensemble de petits télescopes. Le principe dit
de « synthése d’ouverture » est similaire & celui des fentes d’Young. Il a été suggéré
par Fizeau au XIXéme siécle et mis en pratique par Pearse et Michelson en 1920

4. Jean-Louis Basdevant et Jean Dalibard “Mécanique Quantique” Ecole Polytechnique.



1.3. Interférométrie et physique fondamentale

au télescope du Mont Wilson aux Etats Unis pour mesurer la taille de Bételgeuse
dans la constellation d’Orion (voir fig. . Les trous d’Young sont remplacés par deux
miroirs de télescopes. Le signal est ensuite combinée sur un détecteur afin de mesurer
la différence de marche des faisceaux incidents.

Size of Star
u
Size of Earth’s Orbit

L1
Size of Jupiter's Orbit

FIGURE 3. — A gauche Bételgeuse est une supergéante rouge située dans la constella-
tion d’Orion, & 640 années-lumiére de la Terre. A droite, le « Very Large
Telescope » au Chili.

Cette technique est délicate car il faut un excellent controle des chemins optiques
parcourus dans les deux bras de l'interférométre. Mis en service en 2001, le « Very
Large Telescope » construit au Chili par I’Observatoire Européen Austral, est un
réseau de quatre télescopes de 8 m de diamétre chacun réalisant un diamétre équi-
valent d’une centaine de métre (voir fig . Cette technique est basée sur des travaux
d’Antoine Labeyrie du I’Observatoire de Haute Provence.

FIGURE 4. — Vue d’interférométre VIRGO et schéma de 'interféromeétre LIGO

Une autre application de Uinterférométrie sont les expériences VIRGO et LIGO
(fig. @ dont le but est la détection des ondes gravitationnelles prédites par la relativité
générale d’Einstein. La principe de fonctionnement est basée sur le fait que lorsqu’une
onde gravitationnelle passe a un endroit, elle y courbe trés légérement 1'espace-temps.
La lumiére suivant la courbure de ’espace-temps, les installations de VIRGO et LIGO
ont pour but de détecter une différence entre la distance parcourue par deux faisceaux
lasers.



1. PC1 : Interférences et probabilités



2. PC2 : Transformée de Fourier et
relation d’incertitude

Mécanique quantique (PHY 311)
Pierre Vanhove

PC du 22 avril 2015
2.1. Propriétés générales de la transformation de Fourier

On définit la transformée de Fourier f(x) de f(k) selon

o 1 e ikx
fl@)= = | et (1)

On suppose que la transformée de Fourier satisfait toutes les conditions pour une
bonne définition de I'intégrale. En particulier nous supposons que f € L? (]R)F_-I
On peut montrer que la transformation inverse est donnée par

- +oo )
f = [ e ds. 2)

a) Montrer que si f(z) est la transformée de Fourier de f(k), alors f(ax) est la
transformée de Fourier de f(k/a)/|a| pour a € R*.

b) Montrer que si f(k) est réelle et paire, alors f(x) est réelle et paire. Montrer que
si f(k) est réelle et impaire, alors f(x) s’écrit f(x) = ih(z), ou h(x) est réelle et
impaire.

¢) Quelles sont les transformées de Fourier des dérivées successives f'(k), ..., f( (k) ?

d) Isométrie : on considére fi(x) transformée de Fourier de f1(k) et fo(z) transformée
de Fourier de f2(k); montrer que

+oo - +oo

| RwA®dE= [ i@ )
oo oo

e) Déterminer la transformée de Fourier d’un produit de convolution

s 1 e 'L T /
fs(kr)—m/ aK! oK) Falk — k). (1)

1. L’appendice B du livre de cours J.-L.. Basdevant et J. Dalibard “Mécanique Quantique” Ecole
Polytechnique contient des détails sur les transformées de Fourier.




2. PC2 : Transformée de Fourier et relation d’incertitude

2.2. Transformation de Fourier et inégalités de Heisenberg

On choisit f(k) une fonction normée et centrée a 'origine :

+oo oo
[ ifwpac=1 [ WP =o. (5)
—c0 —00

On suppose que sa transformée de Fourier f(x) satisfait les mémes hypothéses. On
définit les variances :

—+00

+oo
(Ak)? ::/ |f(E)PE*dk et (Ax)? ;:/ |f(2)|?x?de . (6)

—00 —0o0

a) Montrer que AxzAk > 1/2. On pourra étudier pour A réel, le signe de

w-f”

b) Montrer que si AxAk = 1/2 alors f(x) et f(k) sont des gaussiennes. On cherchera

par exemple d’abord la forme de f(k) en montrant quelle satisfait une équation
différentielle simple que 'on déterminera.

- df

kf(k)+ )\% dk. (7)

On utilisera l'intégrale suivante pour o > 0

“+oo
—at? ™
dt =4/ —. 8
[ era= ®

¢) Réciproquement, montrez que si f(k) est de la forme

~ K2

f(k) = foe 2%, (9)

avec fo et Ao constantes réelles telles que f? est normalisée, alors Ak? = \o/2, et
que AzAk =1/2.

d) En utilisant le lien impulsion-vecteur d’onde en déduire I'inégalité de Heisenberg
AzAp > h/2.

2.3. Evolution du paquet d’onde libre

On considére le mouvement libre, & une dimension, d’une particule de masse m
dont I'état quantique est défini a I'instant ¢ par le paquet d’onde suivant

blt,x) = ﬂlﬁ / It p)eFdp. (10)

10



2.4. Relations d’incertitude et physique fondamentale

a) Rappeler (sans démonstration) Uexpression de (¢, p) en fonction de (¢, z). Quelle
est la densité de probabilité de I'impulsion p a I'instant ¢ 7 Quelle est la relation
entre ’énergie F et 'impulsion p de la particule ?

b) Rappeler I'expression de la position moyenne (x)(¢) et de I'impulsion moyenne
(p)(t) sous forme d’une intégrale sur x, faisant intervenir en particulier la fonction
d’onde ¥ (t, x).

c¢) Calculer la dérivée par rapport au temps de (z)(t) et montrer en particulier que

dz) _ ) )

a _ m

d) Que devient cette relation si la particule évolue dans un potentiel V(x)?

2.4. Relations d’incertitude et physique fondamentale

De maniére générAale la relation d’incertitude d’}}eisenberg dopne que pour deux
observables A et B, les valeurs (Aa)? = (W|(A)?|¢) — (W|A|)? et (Ab)? =
(Y|(B)?|¢) — (v| BJ1p)? satisfont I'inégalité

Aa b= 3 [(wllA, Blle)] (12)

Ainsi on peut simultanément mesure que des observables qui commutent.

FI1GURE 1. — Simulation montrant trois états successifs : les atomes sont de plus en
plus denses. De gauche & droite : la température du systéme étant su-
périeure & la température critique T, la température T' < T¢, et fina-
lement T' <« Tt

11



2. PC2 : Transformée de Fourier et relation d’incertitude

Le relation d’incertitude de Heisenberg joue un roéle important dans le mécanisme
de piégeage des atomes et les condensats de Bose-Einstein. Une description de ces
phénomeénes est donnée dans ce texte de Jean Dalibard “La condensation de Bose-
Einstein en phase gazeuse” (Images de la physique 2000)

http://www.phys.ens.fr/ dalibard/publications/images_physique.pdf

12



3. PC3 : Barriére de potentiels et effet
tunnel

Mécanique quantique (PHY 311)
Pierre Vanhove
PC du 6 mai 2015

3.1. L’effet tunnel dans la vie quotidienne

\__/
\/ E<V EV)

L J

FIGURE 1. — Effet tunnel a travers une barriére de potentiel. L’onde incidente ve-
nant de la gauche traverse la barriére de potentiel (en bleu) pour étre
transmise & droite.

L’effet tunnel désigne la propriété que posséde un objet quantique de franchir une
barriére de potentiel méme si son énergie est inférieure a I’énergie minimale requise
pour franchir classiquement cette barriére. C’est un effet purement quantique, qui ne
peut pas s’expliquer par la mécanique classique. Pour une telle particule, la fonction
d’onde, dont le carré du module représente la densité de probabilité de présence,
ne s’annule pas au niveau de la barriére, mais s’atténue a l'intérieur de la barriére,
pratiquement exponentiellement pour une barriére assez large. Si, & la sortie de la
barriére de potentiel, la particule posséde une probabilité de présence non nulle, elle
peut traverser cette barriére. Cette probabilité dépend des états accessibles de part
et d’autre de la barriére ainsi que de ’extension spatiale de la barriére.

L’effet tunnel est en jeu dans de nombreux phénoménes physiques

e les molécules : NH3, par exemple. L’effet tunnel est entre deux minima du
potentiel pour les configurations de la molécule d’ammoniaque. Voir figure

e les modélisations des désintégrations (fission, radioactivité alpha). C’est Georges
Gamow qui a proposé une explication de ce phénoméne en 1928. Voir figure
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3. PC3 : Barriére de potentiels et effet tunnel

O

N
.
-
="
N

V(x)
A

e

F1GURE 2. — Configurations de la molécule d’ammoniaque et le potentiel décrivant le
systéme
e les diodes & effet tunnel,

e la mémoire MRAM utilisant un effet tunnel magnétique mettant en jeu des
électrons,

e les microscopes a effet tunnel,

e l'effet Josephson est I'apparition d’un courant entre deux matériaux supracon-
ducteurs séparés par une couche faite d’un matériau isolant ou métallique non
supraconducteur. Ce phénoméne prédit par Brian David Josephson en 1962 a
été récompensé par le prix Nobel en 1973.

Ep‘

m

FIGURE 3. — Potentiel subi par la particule a en fonction de sa distance au noyau.

3.2. Conditions de raccordement a l'interface d’un
potentiel discontinu.

a) On considére une solution stationnaire de ’équation de Schrodinger (a4 une dimen-
sion) de la forme

U(t,z) = p(x)e™ ™" (1)

14



3.3. Barriére de potentiel a une dimension - Effet tunnel.

marche

.
_/L

barriére

puits double
(ou barriére
au fond d’un

puits)

FIGURE 4. — Potentiels potentiels physiques et leurs approximations sous forme de

puits carrés.

Quel est le lien entre w et I’énergie associée a 1’état stationnaire ?
b) Si le potentiel V' est continu, que dire de la continuité de ¢ et ¢’ ?

¢) On suppose que le potentiel V' admet une discontinuité en x = 0 tout en restant
borné. En considérant ce cas comme le cas limite d’un potentiel continu, que peut
on dire de la continuité de ¢ et ¢’ dans ce cas. Que dire de la continuité de ¢ ?

d) Que se passe-t-il si le potentiel est une fonction § de Dirac (un potentiel infiniment
haut et infiniment fin) V(z) = K §(x)?

3.3. Barriére de potentiel a une dimension - Effet tunnel.

On considére le potentiel V(z) tel que V(z) = 0siz < 0, V(z) = Vo > 0 si
0 <z <a, V(z) = 0six > a, et on cherche une solution stationnaire p(z) de
I’équation de Schrodinger pour une particule de masse m et pour une énergie E telle
que 0 < E < Vj.

a) Montrer (sans calculer les coefficients A,...,G) que ¢(z) peut se mettre sous la
forme : i i
o1(z) = Aelk® 4 Be~ike siz <0
orr(z) = Ce™ % 4 Detd” si0<z<a (2)
orrr(x) = Felk® 4 Qe ike sirz>a

15



3. PC3 : Barriére de potentiels et effet tunnel

A V(il])

Vo

\

0 a @

ol q et k sont des coefficients positifs que I'on précisera en fonction de E, V|, m,
a et h.

b) Comment procéderait-on si on voulait déterminer les constantes A, B,C, D, F,G
(ne pas essayer de le faire a ce stade). Quelle est la dimension de Iespace vectoriel
des solutions a k donné?

¢) On suppose que la situation physique envisagée correspond a des particules émises
par une source située a gauche du potentiel, en —oo. Quel coefficient de p(z) faut-il
alors annuler par hypothése ?

d) Dans la région z < 0, on peut décomposer la fonction d’onde en un terme d’ampli-
tude de module carré Jy correspondant & ’onde incidente et un terme d’amplitude
de module carré Jg correspondant & ’onde réfléchie, et on définit les coefficients
de réflexion R et de transmission T de la barriére par les relations :

R= |28
Jr

J
etT:—T

7| (3)

Exprimer R et T en fonction des coefficients non nuls de ¢(x) ou Jr correspond
au module carré de ’onde transmise.

e) En utilisant les relations de continuité de ¢(z) et de sa dérivée, calculer F' et B
en fonction de A. Montrer que les facteurs de transmission T' et de réflexion R
s’écrivent

T (2¢k)> ot R — sinh®(ga)(¢* + k*)?
(2qk)? cosh?(qa) + (¢ — k2)? sinh?(qa) (2gk)2 cosh?(qa) + (g2 — k2)2sinh*(qa))

(4)

f) On suppose que ga > 1 (barriére « épaisse »). Calculer le coefficient de transmis-
sion T de la barriére, et montrer qu’il peut se simplifier sous la forme suivante :

E(V - E)

T~ 16
%2

e 2ae (5)
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3.4. Application a la marche de potentiel a4 une dimension.

g) Application numérique :

i) On considére un électron d’énergie £ = 1eV pour une barriére de potentiel
avec Vy = 2eV et d’épaisseur a = 1 A. Calculer la valeur du coefficient de
transmission 7.

ii) On considére maintenant le cas d'un proton de méme énergie sur la méme
barriére. Que vaut le coefficient de transmission ?

On pourra se servir des relations utiles : he = 197,3 eV.nm et mec® = 0,511 MeV
et mpc? = 938,272 MeV. Un électron-volt 1eV = 1.78310" % kg.c>. Un Angstrom
1 A=10"19m.

3.4. Application a la marche de potentiel a une
dimension.

AV(ZC)

Vo

»
P

0 a =

On considére maintenant le potentiel V' (z) en « marche d’escalier » tel que V(z) =0
sixz < 0et V(z) =Vysix > 0. Toujours avec E < Vj, déduisez des résultats de
I’exercice précédant la valeur de R si 0 < E < V7 Quel est le profil de la fonction
d’onde dans la région x > 0.

3.5. Résonance de diffusion

On s’intéresse maintenant & nouveau au cas de la partie mais avec l’énergie I/

V2m(E -V

prise supérieure & la hauteur V4 de la barriére. On posera ¢’ = <h0)'

a) Ecrire Iexpression de la fonction d’onde dans les trois régions de I’espace. On
remarquera que la grandeur ¢ introduite dans ’exercice [3.3| est maintenant imagi-
naire pure et que l'on retrouve bien ’expression correcte de la fonction d’onde &
condition de poser ¢ = iq’.

17



3. PC3 : Barriére de potentiels et effet tunnel

b) En utilisant directement les résultats de I'exercice [B.3] calculer le coefficient de
transmission 7', que 'on exprimera en fonction de k, ¢’ et ¢'a, puis de E, V; et
da.

On rappelle que sinh i = ¢sinf et cosh i = cos 6.

¢) Montrer que pour certaines valeurs de ’énergie appelées résonances, on a T = 1.
Interpréter physiquement la condition de résonance.

d) Calculer R puis R+ T.

18



4. PC4 : Mouvement de particules
quantiques a une dimensions : états
liés

Mécanique quantique (PHY 311)
Pierre Vanhove
PC du 13 mai 2015

4.1. Evolution temporelle

On considére la fonction d’onde ¥(t, x) = Z cn(t)pn(z) ot les ¢, () sont les états
n
propres du hamiltonien Hy,(z) = Ep@n(x). On démontre en analyse hilbertienne
que les états propres d’un opérateur hermitien forment une base orthonormée de
I’espace des états, c’est-a-dire qu'une telle décomposition est toujours possible, et que
les ¢, (x) sont « orthonormés » au sens des fonctions :

o0
P (T)m(T)dT = dnim, - (1)
a) Montrer en utilisant l’équaﬁ%%l de Schrodinger que l'on a :

P(t,x) =Y cn(0)e”

n

iEnt

" on (). (2)

4.2. Invariance par parité

a) On considére une particule dans un potentiel invariant par parité : V(—r) = V (r).
Soit 9 (r) un état propre de H. Montrer que ¢ (—r) est aussi état propre, pour la
méme valeur propre.

b) En déduire que I'on peut chercher les états propres donnés par des fonctions paires
ou impaires.

¢) Dans le cas ou les niveaux d’énergie sont non dégénérés, montrer que les états
propres sont nécessairement pairs ou impairs.

d) A lalumiére de ces considérations expliquez la forme des fonctions d’ondes du puits
carré infini données cours numéro 3. Le puits carré infini est défini par V(z) =0
pour x € [0, L] et 400 pour x < 0 et x > a. Les fonctions d’ondes sont i, () =

% sin (”T’Tx)
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4. PC4 : Mouvement de particules quantiques a une dimensions : états liés

4.3. Etats isotropes de |'atome d’hydrogéne

e Gkt fee ~F-]

Jf i ; 2aq
N E = o .9 S
2 \ = ol Sl o5t N -ay3

,— N £
Cortod fuee - 2Tt~ 5 (¥ 7) - 409

FIGURE 1. — manuscrit de l'article de Niels Bohr de juillet 1913 (avec la permission
de I’« Archive Niels Bohr », Copenhague)

Les niveaux d’énergie des états a symétrie sphérique de l'atome d’hydrogéne
peuvent s’obtenir par un calcul a une seule dimension en factorisant la dépendance
angulaire. On considére un électron de masse m dans un potentiel V(z) tel que :

ahe

V(z) =00 si x <0; V(z) = R six >0, (3)

ot a = ¢?/(4meghc) ~ 1/137 (constante sans dimension), c est la vitesse de la lumiére
et q est la charge élémentaire.

a) Montrer que la fonction d’onde 1) (z) = Cze=%/% pour z > 0 et 1)(z) = 0 pour z <
0 est fonction propre de I’hamiltonien pour une valeur de ag que 'on déterminera.
Calculer la valeur propre E; correspondante. On exprimera Fq et ag en fonction
de m, a, h et c.

b) Calculer numériquement Ej et ag. On utilisera que he = 197,3 eV.nm et mc? =

0,511 MeV.

c¢) Déterminer la constante de normalisation C' en fonction de ag.

d) Calculer la valeur moyenne de 1/x dans I’état |¢)) et en déduire la valeur moyenne
de I’énergie potentielle. Calculer la valeur moyenne de I’énergie cinétique. Quelle
relation, valable en mécanique classique, y a-t-il entre ces deux quantités ?

e) Plus généralement, on cherche maintenant des solutions sous la forme 1, (x) =

exp(—x A, /ao)yn(x/ag) correspondant a ’énergie propre E,,, avec les changements
de variable A\, = \/E,/E1. A quelle équation différentielle doit obéir y, () ?

20



4.3. Etats isotropes de I'atome d’hydrogéne

o
f) On suppose que y,(x) = (x/ao)SZcq(x/ao)q avec ¢y # 0. Montrer que s = 1
q=0
et que la série est forcément finie. En déduire les niveaux d’énergie FE,, possibles.
Combien y en a-t-il ?
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4. PC4 : Mouvement de particules quantiques a une dimensions : états liés
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5. PC5 : L'oscillateur harmonique

Mécanique quantique (PHY 311)
Pierre Vanhove
PC du 27 mai 2015

5.1. Notations de Dirac et relations de commutation dans
I’espace des états

e Les éléments de I'espace de Hilbert £ sont appelés kets et notés [1).
e A tout ket |y) de &y on associe I'application linéaire complexe suivante

x:&g — C
[9) = x(¢) (1)

e Cette application définit une forme linéaire telle que pour deux nombres com-
plexes A1 et Ay quelconques et deux kets |¢1) and |¢2) de I'espace de Hilbert on
a

X(A1[d1) + Aold2)) = A1 x([91) + A2 x(l92)) - (2)

e L’ensemble de ces applications linéaires constituent un espace vectoriel, dit es-
pace dual, &};. Les éléments sont appelés des bra et sont notés (x|. On utilise
la notation suivante

x()) := {x]#) - (3)

Ainsi un bra et un ket forment un bracket c’est-a-dire une « parenthése ».
e La relation entre ’espace de Hilbert et son dual se traduit par la relation

(x(9))™ = ((xle)"™ = (olx) = ¢(1x)) (4)

qui implique

()" = (x| (5)

e Sien général on peut toujours associer un bra dual (¢| au ket |¢), il n’existe pas
toujours de ket dual & un bra donné. En général les espaces de Hilbert sont de
dimensions infinie est (£};)* # En le dual du dual n’est pas I'espace d’origine.

e On dispose d’opérateurs linéaires sur £, notés fl, B , ... et on suppose que 1'on
peut définir un produit (interne) entre ces opérateurs noté simplement A - B.
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5. PC5 : L’oscillateur harmonique

On suppose ce produit associatif par rapport a ’action d’un opérateur sur un
ket (noté Alt))), c’est-a-dire que 'on a

(A-B)[) = A(B(1¢))) = A(B¢)) (6)
e Etant donné un opérateur /l, son hermitique conjugué (ou adjoint) Al vérifie

Y(AT9)) = (|AT|9) = (4| Aly))". (7)

Un opérateur A est dit hermitien si et seulement si AT = A.

a) Vérifier que les définitions ([2)) et (4) impliquent que (x|¢) définit un produit scalaire
linéaire & droite et anti-linéaire & gauche.

b) Montrer que si A est un nombre complexe alors |AY) = A|¢p). Comment s’exprime

(M| en fonction de A* et (| ?
¢) On considére le ket AJtp), montrer que le bra associé peut s’écrire (1h|Af.
d) Montrer que Pon a (A- B)t = Bt . At
e) En considérant Paction des observables position et impulsion sur une fonction
d’onde quelconque (), montrer que :
i) Les opérateurs & et p sont hermitiens;
ii) on a dans l'espace des états la relation générale : [Z,p] =& -p — p- & = ikl

Par la suite, 'opérateur identité I sera le plus souvent sous-entendu.

5.2. L'oscillateur harmonique

On considére le mouvement & une dimension d’une particule soumise a une force de
rappel en — Kz, donc a un potentiel en %K 22 (oscillateur harmonique). L’hamiltonien
s’écrit donc :

. H2 1
fy = f—m + 5K, avec K = mQ. (8)

a) Ecrire 'équation de Schrodinger indépendante du temps pour la fonction d’onde

¢ ().

Les solutions de cette équation et les valeurs propres associées, représentées du
la figure [I ne sont a priori pas évidentes. Le but de cet exercice est de montrer
qu’on peut déterminer complétement les énergies et les états propres du hamiltonien
par une méthode purement algébrique (due a Dirac), en travaillant directement dans
I’espace des états, et non dans celui des fonctions d’onde. Cette méthode est basée
sur l'utilisation de la relation de commutation entre observables [, p] = iF.
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5.2. L’oscillateur harmonique

L

FIGURE 1. — Les cinq premiers niveaux d’énergie et profil des fonctions d’ondes de
I'oscillateur harmonique.

A~

. . ) ) -~ Hy
b) En considérant l’expressmn de l'opérateur sans dimension H = —, montrer

hQ’
que les opérateurs X W = th sont sans dimensions, et que
. p2 X2 .
H = — + 5 avec [X P

1 . .
c) L’astuce de Dirac a été de définir les opérateurs a = —(X +iP) et

V2

E(X — iP). Ces opérateurs sont-ils hermitiens ? Calculer le commutateur

a,a"]. Calculer [N,a] et [N,a*]. On pose N = a*a. Montrer que N est hermitien

+

(4,

- ~ 1
etqueHzN—i—a

d) Soit v une valeur propre de N, de vecteur propre associé |¢,) : N |¢,) = v |¢,).

i) Montrer en calculant la norme de a|¢,) que v > 0, et que a|¢p,) = 0 si et
seulement si v = 0.

ii) Montrer en calculant la norme de a™ |¢,) que a™ |¢,) # 0.

iii) Montrer que si v > 0, alors a|¢,) est vecteur propre de N avec la valeur
propre (v —1).

iv) Montrer que les propriétés qui viennent d’étre démontrées ne peuvent étre
satisfaites simultanément que si v est un entier naturel. On posera dans la
suite v = n.
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5. PC5 : L’oscillateur harmonique

e) Montrer que a™ |¢,) est vecteur propre de N avec la valeur propre (n + 1), et en
déduire que tous les entiers naturels sont valeurs propres de N. Quelles sont les
énergies possibles de la particule? Comment peut-on “interpréter” les opérateurs
aetat?

f) Quelle est la valeur de I’énergie de l'état fondamental 7 Déterminer la fonction
d’onde ¢g(z) en explicitant I’équation opératorielle a |¢g) = 0

26

i)

i)

iii)

Montrer en utilisant les propriétés de N et la normalisation des états |n)
que 'on a (& un facteur de phase arbitraire prés) : a|¢n) = /n|pn—1) et

6" 6n) = VT 1[dnsr).

Donner l'expression de |¢,) en fonction de |¢g). Montrer en revenant aux
fonctions d’onde en « représentation x » que ’on peut ainsi déterminer tous
les ¢p(z). On a donc complétement résolu I'équation différentielle écrite ci-
dessus.

. 1 . ;
Montrer que X = 7 (&+ + &) et P = % (dJr - d). Utiliser ce résultat pour

déterminer les valeurs de <X >, <15>, <X 2> et <]52> dans le niveau |¢y,,). En

déduire Az et Ap, et comparer la valeur du produit AzAp avec la limite
donnée par le principe d’incertitude de Heisenberg.



6. PC6 : Expérience de Stern et
Gerlach

Mécanique quantique (PHY 311)
Pierre Vanhove
PC du 3 juin 2015

6.1. Théoréme d’'Ehrenfest

On considére une observable A et sa valeur moyenne dans l'état |¢) : (A) :=

(| Ale).
a) Montrer que si A ne dépend pas explicitement du temps alors

d(4)

Ldd)
T

(WIIA H]lp). (1)

Ce résultat constitue le théoréme d’Ehrenfest qui permet de faire le lien entre méca-
nique quantique et mécanique classique.

Comme application considérons le cas d’une particule de masse m évoluant dans
un potentiel unidimensionnel V' (z).

b) Etablir les équations du mouvement pour les valeurs moyennes (X) et (P).

¢) On rappelle que la forme générale de la relation d’incertitude d’Heisenberg est
donnée par Aa E > 1[(y|[A, H]|)|. On définit 7 = Aa/|v| ot v = d(A)/dt. A
quoi correspond le temps 77 Et quelle relation satisfont 7 et ’énergie ?

6.2. Moment magnétique

6.2.1. Description classique : précession de Larmor

On considére un électron décrivant une orbite circulaire a vitesse constante.

a) Quel est le rapport, noté v, entre son moment magnétique ji et son moment ciné-
tique L.

On admet qu’en présence de champ magnétique (sans champ électrique), lorsque

I’énergie d’interaction entre le champ et le dipole magnétique est suffisamment faible,
on peut encore utiliser la relation précédente entre i et L.
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6. PC6 : Expérience de Stern et Gerlach

b) Comment évolue un dipdle magnétique dans un champ magnétique uniforme ?
Peut-on avoir un champ magnétique B = B, €, avec B, non constant ?

c) Pour un faisceau de particules incidentes de vitesse v = vy€), et de moments
magnétiques I = . €, orientés positivement et négativement selon l’axe des (Oz),
qu’observe-t-on pour un champ magnétique tel que 0,8, # 07

6.2.2. Description quantique

Dans 'expérience de Stern et Gerlach I'espace des états est exprimé en termes des
vecteurs représentants les projections du spin |+) := |S;,+) et |—) := |S;, —) selon
I'axe (Oz). Dans cette base l'opérateur moment magnétique prend la forme

L 0 1)\ L 0 —i\ . 1 0 ()
d) Soit le vecteur unitaire @ repéré par les angles polaires 6 et . Quelles sont les

valeurs propres de jig := ji -4 ?

e) On suppose le systéme dans I’état |+). Quels sont les résultats possibles d’une me-
sure de fi, 7 Avec quelles probabilités 7 Quel est I’état du systéme immédiatement
aprés la mesure ?

f) A un instant immédiatement ultérieur, on mesure fly. Quels sont les résultats
possibles ? Avec quelles probabilités ?

On souhaite maintenant étudier la dynamique du moment magnétique dans un
champ magnétique constant By paralléle & (Oz). Le hamiltonien s’écrit :

H = —ji- By = —ji, By (3)
A linstant ¢ = 0, le moment magnétique est préparé dans un état propre |+)z de
[z avec la valeur propre —+pg.

g) Ecrire le théoréme d’Ehrenfest pour {(fiz) et montrer que la valeur moyenne du
moment magnétique obéit aux équations classiques.

h) On s’intéresse a présent plus généralement & I'évolution du vecteur d’état |i(t))
que 'on décompose sous la forme

() = () [+) + () |-) - (4)

i) Donner 'expression des coefficients ¢, (t) en fonction de leurs valeurs a ¢ = 0.

ii) Montrer qu’a U'instant Z, [)(t)) est de la forme |[+)g(), pour un vecteur (t)
dont on précisera les angles polaires 6(t) et ¢(t).

iii) Interprétation physique ?
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7. PC7 : Dynamique d'un systeme a
deux niveaux

Mécanique quantique (PHY 311)
Pierre Vanhove

7.1. Oscillation de Rabi PC du 10 juin 2015

Ey ———|2)
hiwg
B, —'Y |1)

FIGURE 1. — Systéme a deux niveaux

On considére un atome & deux niveaux d’énergie Fy et Fs tels que Ey — F; =
—hwy > 0 (voir figure , correspondant & deux états normés et orthogonaux que
nous noterons |1), considéré comme ’état fondamental, et |2), représentant I’état
excité. On supposera que les seuls états accessibles pour cet atome sont décrits par
les vecteurs normés de ’espace de Hilbert & deux dimensions engendrés par la base
B ={|1),/|2)}. Le hamiltonien qui régit 1’évolution temporelle de ’état de cet atome
s’écrit donc simplement :

A~ hwo
Ao = Z22 (11)(1] - 2) 2] (1)
Cet atome est soumis a une excitation laser décrite par un champ électrique classique
E(t) = Ep cos(wt 4 ¢). Le systéme étant dans I’état fondamental |1), on applique a
I'instant ¢ = 0 une perturbation monochromatique V' (¢) donnée par
hwy

V(t) === (el +e72)(]) . (2)

a) Montrez que H(t) := Ho+V (t) peut se mettre sous la forme H(t) = R(t) Hy Ri(t)

ou H; est un Hamiltonien indépendant du temps et ]A%(t) est une transformation
unitaire dépendant du temps.
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7. PC7 : Dynamique d’un systéme a deux niveaux

b) Soit R(t) un opérateur unitaire, c¢’est-a-dire que R(t) R(t)! = I quelque |1(t)) =
R(t) |x(t)). Montrer que si |1)(t)) satisfait P'équation de Schrodinger ih% = H¢)
alors |y) satisfait 1’équation de Schrodinger

mdc’;? _ (R(t)TﬁR(t) _ mz%@ﬂ‘”jﬁ) ). (3)

¢) On suppose maintenant 'opérateur d’évolution U(t) tel que [¢(t)) = U(#)[1(0)).
Montrer que U (t) satisfait I’équation de Schrédinger

AU 4o
ih— = =H®)U (). (4)

d) Si H est indépendant du temps montrer que 'opérateur d’évolution est donné par

Ul(t) = exp (—z?) . (5)

e) Pour le systéme de Rabi avec
- wt (10
R(t) := exp <—22 <0 _1>> . (6)

Heg .= ROVHR(t) — mR(t)TdR;f) (7)

Montrer que

est indépendant du temps.

f) Trouver I'opérateur d’évolution Usg pour cet Hamiltonien effectif. On posera Q =

V(w —wp)? + w? la fréquence de Rabi.

g) Mettre U(t) sous la forme

70 =50 (005 ) "

h) En déduire Pexpression exacte de la probabilité de transition Pja(t) entre I’état
|1) et I’état |2). Analyser les cas suivants

1) w> wp
i) w=uwo

iii) w < wop
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8. PC8 : Cryptographie quantique

Mécanique quantique (PHY 311)
Pierre Vanhove
PC du 17 juin 2014

8.1. Motivation

Le but de la cryptographie est d’envoyer & un correspondant un message en mi-
nimisant les risques de voir ce message intercepté par un tiers. Ce probléme montre
comment la mécanique quantique peut fournir une procédure répondant a ce besoin.
Plus précisément, on suppose ici qu’Alice (A) souhaite envoyer a Bernard (B) une
certaine information que ’on suppose codée en binaire, par exemple :

-+ (1)

On notera n le nombre de bits de ce message. Alice ne veut transmettre ce message
que si elle s’est préalablement assurée que la communication n’est pas écoutée par un
« espion ».

8.2. Etats de spin 3

On s’intéresse & une particule de spin % L’observable de spin est S = he /2 ou les
o; sont les matrices de Pauli donnée par

oG R i) N () B

On note |0, = +1) les états propres de S, avec valeurs propres respectives +h/2.
Considérons une particule dans 1'é¢tat de spin |0, = +1). On effectue la mesure de la
composante du spin suivant un axe u situé dans le plan Oz et défini par le vecteur
unitaire :

€, = cos b¢é, + sin 0, (3)

a) Rappeler 'observable Sz = S . &, associée a cette mesure.
b) Montrer que les résultats de mesure possibles sont +h/2.

¢) Montrer que les états propres de I'observable Sﬁ sont de la forme
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8. PC8 : Cryptographie quantique

low = +1)=cosy|o, =+1) +sinplo, = —1) (4)
low, = —1)= —sinp|o, =+1)+cosplo, = —1) (5)

Exprimer ¢ en fonction de 6. En déduire les probabilités p de trouver +h/2.
d) Quels sont les états de spin aprés une mesure ayant donné +h/2?

e) Immédiatement aprés cette mesure, on mesure la composante du spin suivant 1’axe
z.

i) Donner les résultats possibles et leurs probabilités en fonction du résultat
obtenu précédemment le long de .

ii) Montrer que la probabilité de retrouver la méme valeur S, = +h/2 que dans
Détat initial |0, = +) est Pyy () = (1 + cos®8) /2.

iii) En supposant maintenant que I’état initial est |0, = —1), quelle est, dans la
méme séquence de mesures, la probabilité P__(#) de retrouver —h/2 dans, la
seconde mesure ? Que vaut Py_(0)? Commentez les résultats.

8.3. Etat intriqué de deux spins

A
z z
ea eb
Source
a b
‘« NN\ ® DYV e Wa W o
X X

FIGURE 1. — Source S émettant une paire (a,b) de particules de spin % Alice me-
sure la, composante du spin a suivant un axe ,, et Bernard mesure la
composante du spin b suivant un axe 6p.

On dispose d’une source & qui produit une paire (a,b) de particules de spin %,
préparée dans U'état |¢) = (7, 75)|2), c’est-a-dire que les variables spatiales et les
variables de spin sont indépendantes. L’état de spin des deux particules est :

1
V2
Dans tout le probléme, on ne s’intéresse qu’aux mesures de spin. Dans 1’expression

(6), |o& = £1) (en 'occurrence u = z) désignent les états propres de la composante
le long de u du spin de la particule a, de méme pour b.

) = — |lof = +1) @ ol = +1) + ot = ~1) @ |0 = -1) (6)
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8.3. Etat intriqué de deux spins

a) Montrer que cet état peut également s’écrire :

L Ma_ _ a_ _
%)=l =tn@li=++li=-Neli=-1] @

b) La paire de particules (a, b) étant préparée dans I’état de spin @—, ces particules

sont séparées spatialement (figure 1) sans que l‘état de spin soit affecté (avant
qu’une mesure n’intervienne).

i) Alice mesure d’abord la composante du spin de a, suivant un axe u,, d’angle
0,. Quels sont les résultats de mesure et les probabilités correspondantes dans
les deux cas 6, = 0 (axe z) et 0, = 7/2 (axe x)?

ii) Justifier qu’aprés cette mesure, I'état de spin des deux particules est :

Axe Résultat Etat
z +h/2 ol =+1)® |0l = +1)
z —h/2 ot =-1)® |0t =—-1)
X +h/2 ol =+1)® 0oL = +1)
X —h/2  Jol=-1)®|cb = 1)

En déduire qu’on peut désormais ignorer la particule a, pour ce qui concerne
les mesures de spin sur b.

c) Aprés cette mesure d’Alice, Bernard mesure la composante du spin de b suivant
un axe uy, d’angle 6. Déterminer les résultats de mesure possibles de Bernard et
leurs probabilités, en fonction du résultat d’Alice, dans, les quatre configurations
suivantes

i) 6, =0, 6, =0,
ii) 6, =0, 60, =m/2,
iii) 0, = /2, 0, =0,
iv) 0, =7/2, 0, =7/2,
Dans quel(s) cas la mesure sur a, et, celle sur b donnent-elles avec certitude le

méme résultat 7

d) On se place dans la situation 6, = 0. On suppose qu’'un « espion », situé entre la
source S et Bernard, mesure la composante du spin b suivant un axe u., d’angle
0, (figure 2).

i) Quels sont en fonction de 6., et du résultat de mesure d’Alice, les résultats de
mesure de ’espion et leurs probabilités ?

ii) Apres cette mesure de I'espion, Bernard mesure le spin de b suivant 1’axe défini
par 6, = 0. Que trouve-t-il et avec quelle probabilité, en fonction du résultat
trouvé par I’espion ?
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8. PC8 : Cryptographie quantique

A E B
z z z
% ﬁ g
a Source b
QR s e
X X X

FIGURE 2. — Un espion, situé entre la source S et Bernard, fait une mesure d’une
composante du spin b suivant un axe 6. avant que Bernard ne mesure la
composante de ce spin suivant 'axe 0p.

iii) Quelle est la probabilité, P(6.) qu’Alice et, Bernard trouvent le méme résul-
tat ?

iv) Quelle est la moyenne de P(f.) si 'espion choisit au hasard 6., avec une
probabilité uniforme sur [0, 7] 7 Quelle est cette moyenne s’il choisit seulement
les deux valeurs 0, = 0 et 6. = /2 de fagon équirépartie ?

8.4. Contexte physique

La crevette-mante & la propriété remarquable de voir la lumiére polarisée li-
néaire ou circulaire Pour plus d’information nous référons a la page wikipedia :
https ://fr.wikipedia.org/wiki/Stomatopoda

8.5. Protocole de codage de messages confidentiels

section non traitée en PC

On souhaite utiliser les résultats qui précédent a la transmission confidentielle d’in-
formation. Alice et Bernard utilisent alors la procédure détaillée dans I’encadré donné
en figure 3. Commenter cette procédure, en s’attachant plus particuliérement a ré-
pondre aux questions suivantes :

a) Comment Alice peut-elle se convaincre de la présence d’un espion ?
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8.5. Protocole de codage de messages confidentiels

. Alice et Bernard décident d’un choix d’axes x et z qui leur
serviront de direction d’analyse.

. Alice, qui dispose de la source S, prépare une séquence ordon-
née de N paires de spins 3 dans I'état (4) (n : nombre de bits
du message). Elle envoie les spins a a Bernard et garde les spins
b.

. Alice et Bernard font, pour chacun des spins dont ils disposent,
la mesure de la composante xz ou z. Le choix entre x et z
Se fait de maniére aléatoire et équiprobable pour chaque spin
et il n’y a pas de corrélation, pour un spin donné, entre la
composante choisie par Alice et celle choisie par Bernard. Ils
stockent chacun I’ensemble de leurs résultats.

. Bernard sélectionne une partie F'N de ses mesures et il commu-
nique publiquement & Alice (par radio, www, etc.) la direction
d’analyse choisie et le résultat obtenu pour chacune des me-
sures de cet ensemble. En pratique, F' ~ 0, 5.

. Alice compare pour cet ensemble F'N ses directions et ses ré-
sultats avec ceux que vient de lui communiquer Bernard. Elle
peut alors détecter la présence éventuelle d’'un espion. Si un
espion est repéré, la procédure s’arréte et une recherche “phy-
sique" de I'espion doit avoir lieu. Sinon :

. Alice annonce publiquement qu’elle est convaincue de ne pas
avoir été écoutée, et, Bernard lui transmet toujours publique-
ment ses directions d’anlyse pour les (1 — F')N spins restants.
En revanche, il ne communique pas les résultats correspon-
dants.

FIGURE 3. — Protocole pour la cryptographie quantique.
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8. PC8 : Cryptographie quantique

b) Quelle est la probabilité qu'un espion présent ne soit pas détecté? On évaluera
numériquement celle probabilité pour FFN = 200.

c) L’espion gagne-t-il en “invisibilité" s’il connait le systéme d’axes Ozy retenu par
Alice et Bernard pour effectuer leur mesure ?

d) Compléter la phrase manquante en indiquant comment Alice peut envoyer son
message & Bernard, sans utiliser d’autres paires de spins que les N paires déja
produites et analysées par Bernard et elle-méme.

8.6. Le théoréme de non-clonage quantique

N

On pourrait imaginer que I’espion cherche & obtenir une information sur un des
photons émis, en clonant son état. Supposons ainsi qu’il dispose d’un deuxiéme pho-
ton, placé dans un état |i) et que l'interaction de ce photon copie I’état du photon
d’Alice et Bernard sur I’état du photon espion, sans modifier I’état du photon original.

1. Soit U l'opérateur d’évolution des deux photons. On note |o) I’état du photon
intercepté par l'espion. Donner lexpression de U(t)|o) ® |i), ou t est choisi
postérieur & 'interaction entre les deux photons.

2. Calculer (¢/,i|UT(t)U(t)|o) @ |i) et en déduire que 'opération décrite ci-dessus
est impossible a réaliser.
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9. PC9 : Molécule de Benzene

Mécanique quantique (PHY 311)
Pierre Vanhove
PC du 24 juin 2015

Lemme : commutation d’opérateurs
On considére deux opérateurs Get H qui commutent : GH = HG. L’ensemble
{|#n)} est une base propre de G et on note g, les valeurs propres correspondantes.

On suppose pour simplifier que ces valeurs propres ne sont pas dégénérées. Montrer
que les |¢,) sont états propres de H.

9.1. Un modeéle simple pour la molécule de benzéne

A A
|
H\ /C\ /H H\C/C\C/H
| I (II: [
| [
H H
On considére les états d’un électron dans une molécule hexagonale Cg formée de 6
atomes équidistants. On désigne par |n) (n =1,...,6) les états de I’électron localisés
respectivement au voisinage des atomes n = 1, ...,6. On suppose que les états forment

une base orthonormée (n|m) = oy, .
L’hamiltonien H de ce systéme est défini dans la base {|n)}, par H = Egl+ W, ot
I est la matrice identité et W vaut :

6
W=-AY (In+1)(n[+n)(n+1]) , (1)

n=1
avec A > 0. Nous utilisons ici les conditions cycliques [7) = [1) et [0) = [6). Nous
allons chercher les états propres |¢r) (k= 1,...,6) de H et les valeurs propres cor-

respondantes FEj,.

a) Démontrer que pour N entier strictement positif, et ¢ entier positif ou négatif :
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9. PC9 : Molécule de Benzéne

0 sinon

N .
Zezmkq/zv:{ N sig=I(N,leZ . @)
k=1

b) Comment peut-on justifier la forme du Hamiltonien H?

¢) On définit I'opérateur de « rotation » R par R |n) = |n+1). Montrer que les valeurs

propres de R sont nécessairement dans ’ensemble {\; = kT3 =1,... ,6}.
6
d) On note |¢x) = ch’p|p> le vecteur propre (éventuel) de R associé a \j. Ecrire
p=1

une relation de récurrence pour les coefficients ¢, et déterminer ces coefficients
en normalisant |¢g).

e) Montrer que les kets |¢y) sont deux a deux orthogonaux.

f) Ecrire 'opérateur de rotation R sous forme matricielle. Montrer que H et R com-
mutent.

g) En déduire les vecteurs propres de H et les valeurs propres correspondantes. Dis-
cuter la dégénérescence des niveaux.

h) Un électron est initialement sur l'atome |1), c’est-a-dire |¢)(0)) = |1). Développer
ce vecteur d’état sur la base des états propres de I’hamiltonien.

i) Quelle est la probabilité de trouver 1’électron sur 'atome 1 & un instant ultérieur ?
Y a-t-il des instants auxquels on est certain du résultat ? On posera w = A/h.

j) Comment se répartissent les 6 électrons dans I’état fondamental de la molécule
de benzéne, compte tenu du principe de Pauli? On négligera la répulsion entre
électrons.

9.2. La molécule de cyclooctatétraéne

FI1GURE 1. — Configuration pour la molécule de cyclooctatétraéne est un dérivé insa-
turé du cyclooctane avec comme formule brute CgHg.

On considére maintenant une chaine fermée de huit atomes répartis réguliérement
(molécule cyclooctatétraéne).

38



9.2. La molécule de cyclooctatétraéne

a) En utilisant une méthode semblable a celle qui précéde, donner les niveaux d’éner-
gie d’un électron en mouvement sur cette chaine. Quelle est la dégénérescence de
ces niveaux ?

b) A Dinstant ¢t = 0, 1’électron est localisé sur le site n = 1 : |(t = 0)) = [1).
Développer ce vecteur d’état sur la base des états propres de 'hamiltonien.

c¢) Calculer la probabilité p;(t) de trouver I’électron sur le site n = 1 & un instant ¢
ultérieur ; on posera w = A/h.

d) Existe-t-il un instant ¢ # 0 pour lequel p;(t) = 17 La propagation d’un électron
sur cette chaine est-elle périodique ?

39



9. PC9 : Molécule de Benzéne

40



10. Devoir Maison 0O : transformée de
Fourier et relation d’incertitude

Mécanique quantique (PHY 311)
Pierre Vanhove
PC du 22 avril 2015

Ce texte prolonge la PC2 et doit étre traité a la maison. Un corrigé sera
distribué en PC3. Vous ne rendez pas de copies.

10.1. Particule libre

On considére une particule libre de fonction d’onde ¢ (t,z) et de transformée de
Fourier 9 (t, p) selon les notation de la PC2.

a) Ecri}“e Péquation d’évolution dont est solution (¢, p). En déduire (¢, p) a Iaide
de ¢(0,p).

b) On appelle py et Apy respectivement la valeur moyenne et I’écart quadratique
moyen de l'impulsion a Uinstant ¢ = 0. Calculer (p)(¢) et Ap(t) & tout instant t.
Interpréter physiquement le résultat obtenu.

c) A laide du résultat de la PC2 exprimer (x)(t) en fonction du temps. Comment
ce résultat se compare-t-il & celui obtenu par la méthode de la question 2.3c de la
PC27?

Dans toute la suite, on supposera que 'origine de ’axe des x est choisie telle que
la valeur moyenne de la position & l'instant initial soit nulle : (z)(0) = 0.

d) De méme, écrire Pexpression de (z2)(t) a Paide de la fonction 9(t,p) et de sa
dérivée par rapport & p, puis montrer que l'on obtient un polynéme du second
degré en t. Pour simplifier la suite des calculs, on supposera que ce polyndéme
atteint son extremum en ¢t = 0 et on déterminera le coefficient du terme en t2. En
déduire la variance Az (t)?, que I'on exprimera a I'aide de Azg = Ax(0) et de Apy.

e) Donner une valeur approximative de Ax(t) lorsque t — +o0. Interpréter physi-
quement le résultat obtenu.
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10. Devoir Maison 0 : transformée de Fourier et relation d’incertitude

10.2. Oscillateur harmonique

On considére dans cette partie le cas d’un potentiel harmonique V(x) = %mwsz

a) Ecrire les deux équations dont sont respectivement solutions les fonctions ) (z, t)

et p(t, p).

b) En exploitant l’analogie entre les deux équations obtenues a la question précédente,
montrer que

d(p) 2/*"" 7 [ 9Y(t, p)

—L = *(t,p)——"2d 1

TR N ULl matl (1)
Il sera utile de considérer la variable X = - ainsi que la fonction ®(t,X) =

Vmwi(t, mwX).

¢) En déduire une relation entre d(p)/dt et (x). Comment cette relation se compare-
t-elle au résultat obtenu en mécanique classique 7
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11. Premier devoir a la maison

Mécanique quantique (PHY 311)
Pierre Vanhove
donné le 13 mai 2015 - a rendre le 27 mai 2015

1. Courant de probabilité

En électrodynamique classique on définit les densité de charge p et de courant
J = pv, qui obéissent a la relation de conservation de la charge :
dp

STV d=0 (1)

a) Par analogie, on définira en mécanique quantique une densité de probabilité p et
un courant de probabilité J. Montrer que la densité et le courant de probabilité
obéissent aussi a la relation ci-dessus (relation de conservation de la probabilité) si
on prend pour p et J les expressions suivantes, définies pour une fonction d’onde
¥ (r,t) solution de I’équation de Schrédinger pour un potentiel V(r) :

p(r,t) = |¢(r,t)|2:¢i‘(r,t)w(r7t), (2)
J(r,t) = Re (w*(r,t)izp(r,t))
= %W(TJ)VMTJ)—w(rvt)Vi/)*(r,t)]- (3)

b) On recherche des solutions de ’équation de Schrodinger sous la forme (7, t) =
o(r)x(t). Montrer que ¢(r) et x(t) vérifient les équations :

m%‘ — By, (4)
2
_%A¢(r)+V(r)@(r) = FEop(r), (5)

avec E constante. Montrer que l'on a 9(r,t) = op(r)e ¢ et exprimer w en fonction
de I'énergie E de la particule. On dit alors que ¥ (r,t) est une solution station-
naire de I’équation de Schrodinger, et que ¢(7) est une solution de I’équation de

Schrédinger “indépendante du temps”.

¢) Montrer que pour une solution stationnaire de I’équation de Schrédinger la relation
de conservation de la probabilité s’écrit simplement V - J = 0. En déduire que
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2.

Premier devoir 4 la maison

pour une solution stationnaire & une seule dimension d’espace, la valeur du courant
de probabilité est une constante.

On se place maintenant dans un espace a une dimension, et on suppose V(x) = Vj
constant. Montrer que pour E > Vy I'équation de Schrodinger admet comme
solution stationnaire :

Yr(t,z) = <Aeik$ + Be*ikx) exp <—i€?> (6)

et donner la relation entre k, E et les autres données du probléme.

Calculer l'expression de J, (composante de J suivant 1’axe des z) en fonction de
A et de B (et des autres parameétres du probléme) ? Quelle partie de ce courant de
probabilité peut on attribuer & une onde progressive se « déplagant » dans le sens
des x > 07 Dans la suite du probléme, on dira qu'une telle onde est incidente ou
transmise selon les cas (& gauche et a droite de la marche ou de la la barriére de
potentiel).

La fonction (¢, z) est-elle normalisable ? Comment interpréter ce résultat ?

On considére deux solutions stationnaires ¢y, (¢, x) et ¥y, (¢, z) données respecti-
vement par

i ' Eqt
Vi, (L) = <A161k1x + B1eflk1x> exp <—il) (7)
h
i ' Eot
Yy (t,x) = <A2elk2x + B2€_1k2x> exp (—i;) (8)

La fonction d’onde ¥ (¢, x) = ¢y, (t, x) + 1, (t, ) est-elle une solution de 'équation
de Schrédinger 7 Le courant de probabilité et la densité de probabilité associés a
cette fonction d’onde dépendent il du temps ?

Marche de potentiel a une dimension.

On considére le potentiel V(x) en « marche d’escalier » tel que V(z) =0si z <0

et V(z) = Vo > 0siz > 0 (voir figure[I)), et on cherche une solution stationnaire ¢(z)

de

I’équation de Schrédinger pour une particule de masse m et pour une énergie F

telle que 0 < E < V).

2)
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Montrer (sans calculer les coefficients A, B, C, D) que (z) peut se mettre sous la
forme :

or(x) = Aeh* 4 Bemik® sixz <0 (9)
orr(z) = Ce % 4 Det® sixz >0 (10)



2. Marche de potentiel 4 une dimension.

V(z)

»

0 T

FIGURE 1. — Marche de potentiel avec une onde incidente de © = —oo d’énergie

E <W.

ou ¢ et k sont des coefficients positifs que I'on précisera en fonction de E, V|, m,
a et h.

Quelles conditions de raccordement ¢r(z) et ¢rr(x) doivent-elles vérifier si Vj est
fini ?

Expliquez pour quelle(s) raison(s) on doit choisir D = 0 dans la solution pour
x > 0. Exprimer ensuite B et C en fonction de A.

Le choix D = 0 est il en accord avec I’hypothése (que l'on fera par la suite) de
ne considérer des particules incidentes que depuis £ = —oo (et non & = +o00) ? A
quelle partie de la solution () peut correspondre une « onde incidente ». Méme
question pour une « onde réfléchie ».

Que vaut le coefficient de réflexion R défini comme le rapport des courants de
probabilité des ondes réfléchies et incidentes ?

Que vaut le courant de probabilité en = > 07 La probabilité de présence de la
particule est-elle nulle dans la région x > 07

Calculer le déphasage de 'onde réfléchie par rapport & I’onde incidente.

Que deviennent les relations trouvées en ¢) quand Vp tend vers I'infini ? Les hypo-
théses de continuité faites en b) restent-elle vérifiées dans ce cas?

On considére maintenant le cas E > Vj. Calculer les coefficients de réflexion R et
de transmission T" pour des particules incidentes depuis x = —o0, ainsi que R+ T.

n2
analogie avec la réflexion sur un dioptre en optique ?

n FE
ue aeviennen € S1 Oon pose — = fterpreter ce resultat par
Que devi t Ret T si ! 77 ! Interpret ssultat
— VO
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11. Premier devoir a la maison

3. Demi-tour devant un précipice

Vo

»

0 T

FIGURE 2. — Marche de potentiel avec une onde incidente de x = +o00 d’énergie E >
Vo.

On considére maintenant un faisceau monochromatique de particules de masse m
émises par une source située en x = +oo (de la droite) pour le méme potentiel en
marche considéré dans l'exercice précédant (voir figure [2)).

a) Calculer le coefficient de réflexion R.

b) Analyser le comportement du facteur de réflexion en fonction de ’énergie des
particules £ > Vj.

¢) Analyser le comportement pour E — V| par valeur supérieure. Commenter en
comparant avec le comportement de particules classiques.

4. Etalement du paquet d’onde

a) A Dinstant t = 0, la particule libre est décrite par un paquet d’onde () dont on
ne précisera pas 'expression. On suppose seulement que sa transformée de Fourier
(k) est concentrée en k ~ kg. Le paquet d’onde évolue librement sur tout 1’axe
x.

On note H = p?/(2m) le Hamiltonien du systéme sans potentiel. Déterminer
I'expression de 1(p,t) a U'instant ¢ & partir de 1(p,0).

b) On supposera que la fonction d’onde 1[)(p, t) est concentrée autour de la valeur py.
En développant I’énergie du systéme au premier ordre en p

() ~ E(po) + (p — o) (%f) oo (11)
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4. Etalement du paquet d’onde

En exprimant la fonction d’onde (¢, z) comme la transformée de Fourier de ¢ (p, t)
et en utilisant les résultats de la PC2, déduisez en I'expression de 1 (z, t) a I'instant
t a partir de ¢(zx,0). Que déduisez-vous de I’évolution de la fonction d’onde ?

¢) Méme question que précédemment en poussant le développement jusqu’au second
ordre en p, et en considérant cette fois-ci le cas particulier d’un paquet d’onde
Gaussien discuté en PC2

“ 1 (p—p0)>

Y(p,0) = m -

e 2077 . (12)

Quelles conclusions tirez-vous 7
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11. Premier devoir a la maison
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12. Second devoir a la maison

Mécanique quantique (PHY 311)
Pierre Vanhove
donné le 10 juin 2015 - & rendre le 17 juin 2015

1. Effet tunnel résonnant et contrdle de la transmission
d’un électron a travers une barriére

On considére deux boites quantiques que 'on décrit par deux puits semi-infinis
couplés par une barriére tunnel. On s’intéresse au niveau d’énergie le plus élevé de
chaque puits, d’énergie Fy = 0. A l'aide d’électrodes on peut appliquer un potentiel
électrostatique V' sur le puits de droite et —V sur le puits de gauche. On note |g)
et |d) les états localisés respectivement dans les puits de gauche et de droite. On
suppose (g|d) = 0. On appelle A > 0 la constante de couplage tunnel. L’hamiltonien
de couplage s’écrit —A(|g)(d| + |d)(g|). On place un électron de charge —q (¢ > 0)
dans le puits de gauche.

v Energie

a) Ecrire la matrice du hamiltonien dans la base (|g),|d)) lorsqu’une tension V est
appliquée.

b) Ecrire H en fonction de cos20 = qV/+/q2V2 + A2 et sin20 = —A/\/q?V?2 + A2,

c¢) Trouver les énergies propres E. et E_ et les états propres de I’hamiltonien en
fonction de cos 6 et sin .

d) Tracer les énergies propres en fonction de ¢V'.
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12. Second devoir a la maison

e) Quelle est la probabilité P;(t) de trouver 1’électron dans le puits de droite aprés
une durée t?

f) Que vaut la probabilité maximale de passage du puit de gauche vers le puits
de droite et montrer que l'on peut contréler le passage de l’électron & travers la
barriére.

g) Que vaut Py(t) pour V=0 et gV > A.

h) Expliquer comment on peut contrdler le passage de I’électron du puits de gauche
vers celui de droite.

2. Etats quasi-classique d’un oscillateur harmonique

On considére 'oscillateur harmonique a une dimension, de masse m et de fréquence
Q de la PC5. On rappelle que le hamiltonien posséde des états propres |¢,), associé
aux énergies propres E, = hQd(n + %) On introduit les opérateurs a et a™, reliés a

I’opérateur position & par & = \/%(d + av). On rappelle finalement que a|¢,) =
\/ﬁ’¢n—1>~

On construit 'état (o est complexe)
T
a)y=e 2 — :
o) =% 3 o)

Le but de 'exercice est de montrer que cet état reproduit le mouvement d’oscillation
classique de l’oscillateur harmonique.

a) Montrer que |a) est état propre de a avec la valeur propre «. Ce fait implique que
{ala™ = {a]a*.

b) On prépare a t = 0 l'état |¢(0)) = |a). Calculer I'état |1)(¢)) et montrer que
I’évolution revient a remplacer o par a e *%

c¢) Calculer (¥(t)|Z|v(t)) et montrer qu’il correspond au mouvement classique.

d) Calculer (1()|2%]1(t)) et en déduire 'écart-type Az en fonction de A, m et €.
Le comparer a celui de la fonction d’onde de 1’état fondamental de 'oscillateur
harmonique vu en PC5.

e) Pourquoi dit-on que l'état |a) oscille sans se déformer? On l'appelle « quasi-
classique ». Pourquoi « quasi » ?
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Deuxieme partie .

Corrigés des petites classes et
des devoirs
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13. Corrigé PC1 : Interférences et

1.

probabilités

Mécanique quantique (PHY 311)
Pierre Vanhove
PC du 15 avril 2015

Interférences, relation d’incertitude, ondes de matiére

1.1. Nature ondulatoire des photons

a)

On considére une onde incidente monochromatique cohérente. La source est co-
hérente, c’est-a-dire que 'on peut négliger les effets de retard entre les différents
points des sources. Seul le déphasage apreés les fentes importe. On reste aussi dans
un voisinage de l’axe (Oz). Pour les fentes d’Young on fait diffuser des fronts d’onde
d’ouverture angulaire o = . On observera des franges d’interférence lorsque
Q> Qeor SOt pour aX > h D.

Les deux trous diffractent des ondes sphériques donc

E = Ey (cos(wt — kLy) + cos(wt — kL3)) (1)

le,/D2+(x+;)2f:D+(QSJDWJFO(UD% (2)
L2:~/D2—|—(x—;)2:D+(QUQ_DS)Q—FO(I/DQ). (3)

Le déphasage est donc donné par

avec

kxa
L’interfrange est défini comme la variation de z lorsque ¢ varie de 27 donc

kia D
Ap=2r =29 ;- 22 5
L' ‘T (5)

L’intensité du champ sur ’écran est donné par la valeur moyenne temporelle de
la norme carrée du champ électrique (en fait du vecteur Poynting # = E x B car
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13. Corrigé PC1 : Interférences et probabilités

pour une onde électromagnétique |B| = |E|)
I o (|E*); = |Eo|* (| cos(wt — kLy) + cos(wt — kLg)|*)¢ . (6)

Cette valeur moyenne est calculée par le détecteur sur des temps longs, Tystecteur ~
10! s, devant la période typique d’une onde lumineuse Thpge ~ 1074 s.

En utilisant que

L L L1 —L
cos(wt — kL1) + cos(wt — kLg) = 2 cos (wt - k1;_2> cos <k122> (7)

et que
1
(cos(wt —2)): = 5 (8)
on en déduit que
2 Tr\\2
I x 2|Ey| <cos( ; )) . 9)

c¢) La quantité de mouvement des photons incidents est

2, . (10)

Pincident = hk=——e¢, =

L
Bien str les vecteur €] et €5 sont de norme unité. Donc

1_ﬁx+%

_ s hz—3
pz A Ll

N 7

(13)

donc
a

h (z+5 x—4% h a
Ap,| = [pt — p2| = = 2 _ T 2 )~ — 14

ol nous avons utilisé que Ly ~ Lo ~ D car ’écran est supposé étre placé loin des
fentes et que D > .

e) La relation d’incertitude d’Heisenberg

St

Az Apy > 5 (15)
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2. Loi de désintégration exponentielle

donne que
AD j
Az > 27 = 4i ~ 0.07961 . (16)

~ 4ma ™
Pour connaitre I'impulsion des particules il faut connaitre Apg¢cran < Ap, et
pour avoir des franges d’interférence il faut avoir AZecran < 4. On voit donc
que connaitre précisément 'impulsion déduit les franges car on suit la trajectoire
classique de la particule.

1.2. Ondes de matiére

f)

Pour calculer la longueur d’onde de de Broglie des atomes on utilise les relations
sur 'impulsion
h

h
p=mv=hk=— = M\p=— =1.0310""m = 1.03A. (17)
AdB mu

La longueur d’onde de de Broglie est environ d’un Angstrom.

L’interfrange mesurée est i = % =0.82410"°m.

Loi de désintégration exponentielle

Par définition la probabilité que la durée de vie soit supérieure a t; + to s’écrit
F(t1 4+ t2) = P(t > t1 + ta) = P(t > t1 + ta|t > t1)P(t > t1) comme le produit
de la probabilité conditionnelle d’une durée de vie au-dela de 'instant ¢ + ¢5 fois
la probabilité de la durée de vie au dela de 'instant ¢;. Comme nous avons une
loi sans vieillissement P(t > t; + ta|t > t1) = P(t > t2). On trouve donc que
F(tl + t2) — P(t > tl)P(t > tz) = F(tl)F(tQ).

On doit résoudre ’équation fonctionnelle F(x +y) = F(x)F(y) pour tous z,y €
RT. Pour entier naturel n on a que F(n) = F(n — 1)F(1) donc F(n) = F(1)".
Pour tout nombre rationnel r = g € Q, F(p) = F(rq) = F(r)? = F(1)? donc
F(r) = F(1)". La loi de probabilité est une fonction continue, par densité des
rationnels dans les réels on déduit que F(z) = F(1)* = exp(—x/7) pour tout
x € RT. Comme la particule n’existe qu’a partir de l'instant to, on applique ce
résultat & £ =t — tg et donc

F(t) = {e R (18)

0 t<ty

On remarque le temps caractéristique 7 = —log(F (1)) > 0 car la probabilité
satisfait & 0 < F(z) < 1. On vérifie bien str la propriété d’absence de mémoire
P(t > t+to|t > to) = P(t > t+1ty)/P(t > ty) = F(t)/F(0) = exp(—t/7) implique
que le point d’origine importe peu.
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13. Corrigé PC1 : Interférences et probabilités

c)

g)

56

Pour une loi de probabilité f(¢) la valeur moyenne de la fonction g(t) est donnée
par

() = | 0 Fo . (19)

On remarque que ft:roo F(t)dt = 7. On calcule donc

+oo t—tg +o00
((t —tg)) := / (t—to)e - % =T /0 rxe dr=rT. (20)

to

Pour le calcul de I’écart type on remarque que (en utilisant que 7' = 7)

(AT)?) = ((t—to—T)%) = ((t —t0)*) — 27 {(t — to)) +77 (1) (21)
-
= ((t—t))} —7%. (22)
Ainsi
(AT)?) = —7% + /+Oo(t — tg)? 6_@@ = 7% 4 72 /+<><> g’ e dr = 1%, (23)
to T 0

Donc la dispersion des événements AT = 7 est donnée par le temps caractéristique
car le processus est sans mémoire.

w(z)dz et q(t) =1—p(t) = [7° w(z)ds —

= Ji

Par définition la probabilité p(t) = fti)
fti) w(z)dr = f;roow(ac)d:c.

La probabilité que la particule se désintégre entre t et ¢t 4 dt est donnée par P(t <
X < t+dt) = w(t)dt. Mais cette quantité est la probabilité que la particule a
vécue jusqu’a l'instant ¢ et s’est désintégrée donc P(t < X < t+dt) = q(t)P(ty <
X < to+dt) mais P(ty < X < tg+ dt) = w(tp)dt par la propriété d’absence de
mémoire. Ainsi w(t)dt = q(t)w(tg)dt donc w(t) = w(to) t+°° w(z)dz. On résout
cette équation en différentiant w'(t) = —w(to)w(t) donc w(t) = exp(—(t — to)/T)
avec 7 = — log w(tp).

Si on a N particules identiques indépendantes chacune suivant la loi f(t) alors
le nombre de particule en fonction du temps est donné par N(t) = N f(t) =
No exp(—(t —t9)/7). Le temps de demi-vie est donné par N (& + tg) = No/2 soit
d=71In2.

Pour l'iode (t)iode = 7 = 0/1n2 = 11.57 jours.



14. Corrigé PC2 : Transformée de

1.

a)

Fourier et relation d’'incertitude

Mécanique quantique (PHY 311)
Pierre Vanhove
PC du 22 avril 2015

Propriétés générales de la transformation de Fourier

Par définition on a

f(ax)—J%/H%f(k)eikwdx—ml/ﬁéfcc‘;) ¢k g (1)

donc f(ax) est la transformée de Fourier de f(k/a)/|al.

On suppose que f(k) = f*(k) e R et f(—k) = f(k) alors

@) = / )e ke dy = \/ﬂ/f ) ek gy

= \ﬁ Yk de = f(z). (2)

\ﬁ\

On a aussi que

— :L r efikx :L‘:L Fl_ eik:p = f(x
flea) = o= [ fe e = —— [ feyear=j@). @

On en déduit donc que f(x) est réelle et paire.

Si maintenant la transformée de Fourier est réelle f*(k) = f(k) et impaire f(—Fk)

—f(k) alors on en déduit que f*(z) = —f(x) et f(—z) = —f(z) donc f(z) = 1h(:1:_)

o h(x) est une fonction réelle impaire.

Par intégration par partie on montre que

m / f(k) e**dy = — \ﬁ / f(k) e*eda + [f(k)e”“} t: = —izf(x). (4)

=0

Les termes de bords s’annulent car on suppose que la fonction f (k) est a dé-
croissance rapide a U'infini (qui est une condition d’existence de la transformée de
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14. Corrigé PC2 : Transformée de Fourier et relation d’incertitude

Fourier). Par récurrence on montre aisément que

L £(n) ik — (_ir\T
= [ P m e = (i) fo). o)
d) On veut montrer l'identité de Parceval
| si@n@iz=—= [ [ fi@)p@e = [ fwfma. ©

Ou on a utilisé la définition de la transformée de Fourier inverse.

e) La transformée d’un produit de convolution est donnée par

1 s ikx _ ikx /
m/ng(k:)e dk = //f1 Vo lk — k) dkdk
- = N ikx - / zk’a: /
- ﬁ / Fr (ke dk x / Fo(K) ek dk;
= fil@)fa(z). (7)

2. Transformation de Fourier et inégalités de Heisenberg

a) On développe la fonctionnelle I()\)
d fN k ?

10 = [ P [ (kf(k)df;]ik)Jrkf*( )dj;(k)>dk o [ |
®)

Par définition (Ak)? = [ [kf(k)|?dk. Egalement (Az)? = [ iz f(2)|*dz mais par
le théoréme de Plancherel nous avons que (Az)? = [, |df(k)/dk|? dk. Finalement

/ (kf(k)df;,ik)Jrkf*()d‘};(k)>dk—[k|f TG
)

On remarque que cette fonctionelle est un polynéme de degré deux en \ ne prenant
que des valeurs positives

I = (AR 4+ 22 (Az)2 = X>0 pour tout A, (10)

donc le discriminant de cette équation du second ordre est négatif ou nul

(=1)? —4(Az Ak)* < 0 <= Az Ak > (11)

N =

b) Si Az Ak = 1/2 on a une racine double \g = 1/(2(Az)?) = 2(Ak)? telle que
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2. Transformation de Fourier et inégalités de Heisenberg

I(X\o) = 0. Donc

kf(k) + Aod{l(]f) =0 (12)

Ce qui s’intégre en une Gaussienne que ’on prend centrée (symétrique) par rapport
a Porigine
k2

f(k) = foe 2. (13)

La transformée de Fourier d’'une Gaussienne est une Gaussienne

= L iyetran = S [ ey
flx) = \/Q?/Rf(k)e dk—m Re dk

fo _22? _E s _Joe?
= = E e 2 / e 2odk = YV /\OfO e 2. (14)
R

On a fait le changement de variable suivant

ikr — — = ——— (k —ix)Ao) — 5 (15)

et l'on a posé k = k — izAg. La condition de normalisation de la fonction f(k)
implique que

1= / k) 2dk = |fof? / e dk = Vol fol?. (16)
R R

Comme on peut choisir fo réel positif (une phase constante n’est pas physiquement
observable), cette équation détermine la normalisation.

Pour la réciproque, on calcule

(A/-e)?:/]R \kf(k)?dk = f2 /R e dk:\ﬁj;g/\g. (17)

En utilisant la condition de normalisation de la fonction calculée dans la question

précédente on trouve
Ao

(Ak)? = 5 (18)
Pour calculer (Az)? on a
L2 ) )
(Ax)? = / 2 () 2da = / R g = L2 / e o dr= B (1)
R r| dk G R A5
On trouve donc
Az = ! Ak = %; Ax Ak = . (20)

N
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14. Corrigé PC2 : Transformée de Fourier et relation d’incertitude

d) Comme l'impulsion est donnée par p = hk on en déduit que Az Ap > h/2.

3. Evolution du paquet d’onde libre
a)

- +oo pz
3, p) = Vﬂinﬁ J(» bt 2) e dr. (21)

La densité de probabilité est |1(¢, p)|2.
L’équation de Schrodinger s’écrit

Elz)(tap) = ﬁll;(tvp) : (22)

Comme nous avons une particule libre

H(t.p) = 5 (1) (23)
donc )
E= 2an . (24)
b) Nous avons
0= [ sttt (25)

et
oo h [T 0(t,
WO = [ ieprae=7 [T pena, oo
o 1 J ox
ou nous avons utilisé la propriété d’isométrie et que la transformée Fourier de
pY(t,p) est —ihd,(t, z). (Ici nous travaillons avec p = hk d’ott un facteur h).

) [ o,

dt oo dt
+oo *
= [T e+ Dy o)
o dt dt
Comme pour une particule libre
Ldy(tx) B O%Y(ta) P ) I s (Y ))
ih d  2m 022 ih d  2m  0x2 (28)
donc
d@)(t) _ b [T Pyt a) Oy (t, )

[e.9]
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3. Evolution du paquet d’onde libre

__ih [T oy(ta) Oy (t, )
= g [ ) - SR () de
. +OO
_ _@ 31/1@733) w*(t,x) dr . (29)

m ox

— 0o
ol nous avons fait des intégrations par parties. On reconnait dans la derniére ligne
le définition de (p)(t) donc

diz)(t) _ (p)(t)

a  m (30)

On remarquera que d(z)(t)/dt est donné par l'intégrale du courant de probabilité
étudié dans le premier devoir & la maison.

d) Pour une particule dans un potentiel V(z) le méme manipulations s’appliquent
car le potentiel est réel et 'on trouve la méme relation d(z)(t)/dt = (p)(t)/m.
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15. Corrigé PC3 : Barriere de

2.

a)

d)

potentiels et effet tunnel

Mécanique quantique (PHY 311)
Pierre Vanhove
PC du 6 mai 2015

Conditions de raccordement a l'interface d’un potentiel
discontinu.

On considére une solution stationnaire de I’équation de Schrodinger (& une dimen-
sion) de la forme

D@, t) = p(x)e™ . (1)
L’équation de Schrodinger donne que
8D (o, 1) = B (a1 £

donc F = hw.

La fonction d’onde est alors continue (ce qui est une condition nécessaire pour la
continuité de la densité de probabilité) et la dérivée est continue. La continuité de
la dérivée implique la continuité du courant de probabilité. Pour voir cela il suffit
d’intégrer I’équation de Schrodinger de part et d’autre de la discontinuité

€ 2 € 92 T €
B[ @ = - [ S [ v
—€ h2 75/ , —€ .
= o WO-va)+ [ V). (3)

Comme la fonction d’onde est continue, et que le potentiel est continu les intégrales
tendent vers 0 lorsque € — 0. Donc lim._,o(¢'(€) — ¢'(—€)) = 0.

Dans ce cas ¢ et ¢ sont continues, que I'on peut voir en intégrant 1’équation de
Schrodinger de part et d’autre d’une discontinuité. Mais ¢ est discontinue, car si
le potentiel varie I’énergie cinétique doit varier. A énergie constante cela implique

une discontinuité dans la dérivée seconde.

Si le potentiel est une fonction delta de Dirac V(z) = Kd(z) alors ¢’ n’est plus
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15. Corrigé PC3 : Barriére de potentiels et effet tunnel

c)

d)

64

continue car dans ce cas

€

tim [ V(@i@) = Ki(0) ()
donc lime,o(¢'(e) — ¢/ (—€)) = —2254)(0). Mais ¢ est toujours continue.

Barriére de potentiel a une dimension - Effet tunnel.

Dans chacune des régions la fonction d’onde 9 (x,t) satisfait ’équation de Schro-
dinger d’une particule libre dans un potentiel constant ou nul

2 52

Hy(xz,t) = —;naqg(;;’t):E@b(x,t) pour <0 et x>a (5)
2 52

Hi(z,t) = _;@W"‘%w(x,t):Ew(x,t) pour 0<z<a.(6)

Pour une solution stationnaire donnée par une onde plane ¥ (z,t) = exp(ikz —
iEt/h) on a donc

h2k?

E = pour x<0 et z>a (7)
2m
h2k?
E = —+V pour 0<z<a. (8)
2m
Soit
V2mE
kE = 77;1 pour <0 et x>a 9)
2m(Vo — FE
ik=q = m<h0) pour 0<z<a. (10)

On a donc dans chacune des régions en posant v (z,t) = ¢(x) exp(—iEt/h)

or(z) = Ael® 4 Be ik six <0
orr(x) = Ce™ % + Det?* si0<z<a (11)
orrr(z) = Felf* 1 Geikz siz>a

On a six contantes inconnues. On a deux fois deux équations de continuité (pour
la fonction d’onde et sa dérivée). Il nous reste donc 6 — 4 = 2 inconnues. En
choisissant la normalisation de 1 (t,x) on peut toujours poser A = 1 ce qui nous
laisse une inconnue.

Si on veut une particule venant de —oo, il faut poser G = 0. Car ce coefficient
correspond & une particule venant de la droite x = 4o0.

Par définition J; = |A|?, Jg = |B|? et Jr = |F|? donc R = ‘%‘2 et T = }%’2



3. Barriére de potentiel 4 une dimension - Effet tunnel.

e) La continuité de ¢ implique les relations suivantes

A+B = C+D (z=0) (12)
Ce 1 4 Del" = Feika (x =a). (13)

La continuité de ¢’ implique

ik(A—B) = q(-C+D) (z=0) (14)
g(—Ce 9 + Det®) = ikFe*e (3 =a). (15)

La solution de ce systéme de quatre équations & cing inconnues est donnée par

4i ) 2 2
Ak ) peita <e—qa (1 —|—ik) — efa (1 —ik> ) (16)
q q q

2

4ik - k
—22B = Fet [14in| (e71 — 1) (17)
q q
—qa ika k
2Ce™1* = Fe 1-— za (18)
a ika k
2Def* = Fe <1 +z> . (19)
q
Ainsi 'k
4k —lRka
F="" c A. (20)

2 2
q kT _ ik
e—qa (1+zq) ede (1 zq)

On en déduit ainsi que le coefficient de transmission est donné par

2
r - 108 ! (21)
e~ (1 + z%) — ed@ (1 - Z%)

_ (2qk)> (22)

(2qk)? + (¢% + k2)?sinh®(ga)

De I’expression pour B on déduit le facteur de réflexion

4 sinh(aq)?
R = b“;‘ (aq) - (23)
¢—aa (1 n zg) — ea (1 - zg)
‘nh2 2 22

(2gk)2 + (% + k2)2 sinh®(qa) -

On remarquera que R+ 1T = 1.
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15. Corrigé PC3 : Barriére de potentiels et effet tunnel

f) Dans la limite ga > 1 on trouve que

N 16k2q2 e—2qa

T ~ 21(;@

240 (25)
€ .
(k* +¢2)? V¢

g) Application numérique :

i) Avec les valeurs données on trouve pour ’électron avec ¢ = /2m(Vy — E)/h =
V2me2/he = 5.1210°m~!, donc ga ~ 0.5. Comme ¢ = k on trouve que
T =0.777.

ii) Pour le proton de méme énergie, comme il est prés de 2000 fois plus lourd
que 'électron alors ¢ = 2.196 10" m™! et comme ¢ = k on trouve que T ~
3.4107 9 et R ~ 1. Le proton est quasiment totalement réfléchi par la barriére.

4. Application a la marche de potentiel a une dimension.

On prend la limite a — oo avec k fixe dans les solutions & ’exercice précédant. On
trouve donc que ' - 0et R=1-T — 1.
Dans la région x > 0 le profil de la fonction d’onde est

orr(x) = Ce 1 + Det” . (26)

Pour étre normalisable la fonction d’onde doit rester finie pour x — +oco, donc D = 0.
La fonction d’onde pénétre dans la barriére sur une épaisseur limitée de 'ordre de

1/q=h/y/2m(Vp — E).

5. Résonance de diffusion

a) SiVp < E alors ¢ = iq¢’ et nous avons une onde plane se propageant dans la région
O<zr<a.

b) On trouve en posant ¢ = iq¢’ que

T— 44"k B A(E - Vy)E -
Ak2q2 + (K2 - ¢?)?sin(da)?  4(E - Vo)E + Vi sin(¢'a)?

c) Si Sin(qla)Q = 0 alors T = 1 et la transmission est totale. Ceci arrive lorsque
2
qd'a =nm avec n € Z. Soit pour \/2m(E — Vy)a/h = nw donc E =V + (hnm)®

2ma?

d) En appliquant les formules de l'exercice précédant avec ¢ = iq’ on trouve que

B (k‘2 _ q/2)2 Sin(q/a)2
- 4k2q’2 + (k‘2 _ q/2)2 Sin(q’a)2

=1-T. (28)
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16. Corrigé PC4 : Mouvement de
particules quantiques a une
dimensions : états liés

Mécanique quantique (PHY 311)
Pierre Vanhove
PC du 13 mai 2015

1. Evolution temporelle

On considére la fonction d’onde 9 (t,z) = >, cn(t)pn(z) & laquelle on applique
I’équation de Schrédinger

o(t, x)

. _ y !
th = ; ihc,(t) pn(x)
= fh/)(t,x) = ZEn cn(t) on() . (1)
Comme les ¢,, composent une base orthonormée alors pour chaque n on a
il (t) = Epcn(t) <= ca(t) = cp(0) e 1 1" . 2)

2. Invariance par parité

a) On considére Hi)(r) = Ey(r) avec H = —%A—k V(r). Pour ¢(—r) I'Hamiltonien
est H = —%A + V(—r) puisque V(r) = V(=r) alors H' = H donc ¢(—r) a la
méme énergie que (r).

b) On écrit ¥ (r) = ¢y (r)4+9_(r) avec ¢4 (r) = (¥(r) £ (—r))/2. Comme Hip(+r) =
Ev(#£r) alors ¢4 (r) sont aussi état propres de 'hamiltonien avec la méme énergie.
Si 94 et ¥_ sont non nulles la dégénérescence est deux. C’est-a-dire que I'espace
vectoriel des solutions est de dimensions deux

c¢) Si la dégénérescence est de un, c’est-a-dire que la dimension de I'espace vectoriel
des solutions est de un. Il faut alors que soit ¥ est nulle et la fonction d’onde est
impaire, soit ©¥_ est nulle et la fonction d’onde est paire.

d) Dans le cours 3 les états du puits carré infini ont été donnés. Il faut résoudre
h?

I'équation —5—(x) = Epthy(x) pour x € [0, L] avec pour conditions aux limites
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16. Corrigé PC4 : Mouvement de particules quantiques a une dimensions : états liés

Y (0) = ¢ (L) = 0. Les fonctions d’ondes sont ¢, (x) = \/% sin (2Zx). Le systéme
est symétrique par rapport au milieu du puits = L/2. Donc les fonctions d’ondes
satisfont a la propriété de parité v, (L — x) = (—1)" "1, (x). Ainsi ¢_ est nulle
pour n impair et ¢4 nulle pour n paire.

3. Etats isotropes de I'atome d’hydrogéne
Cet exercice traite de ’atome d’hydrogéne selon la méthode suivie par Niels Bohr il
y a 100 ans. La représentation des atomes avec des électrons sur des orbites circulaires

bien qu’utile & Niels Bohr ne correspond pas a la réalité car les orbitales atomiques
sont des nuages d’électrons.

1 électron

FIGURE 1. — A gauche la représentation de I’atome de Niels Bohr, ot ’électron évo-
lue sur une orbite circulaire “classique”. A droite une représentation des
orbitales atomiques montrant la configuration de la fonction d’onde de
I’électron.

On pourra consulter 'exercice 5, chapitre 4 du livre de J.-L. Basdevant et J. Dali-
bard (corrigé en page 470).

a) b) Avec ¢(x) = Cxz exp(—x/ag) dans 'Hamiltonien H = —h2/(2m)i — afic

dx? T
donne

16(0) = (g + (2 —ac) 1) wio) = Bu) ®)

a 2a(2Jm
Puisque que I'énergie est constante, il faut assurer 'annulation de la dépendance

en x. Ce qui donne
h h2eo

ao = = D) =
mca Mg

0.53A. (4)

C’est le rayon de Bohr, et 1’énergie est donnée par

h2
—F = =13.6¢eV (5)
2
2mag

c) La constante de normalisation est donnée par
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3. Etats isotropes de I’atome d’hydrogéne

3

1= / [ (x)|2de = C’Qag/ zle ™ dy = CQCLZO (6)
0 0

On calcule

1\ (1 s e [ 21
<x>_/0 L o) dac—C/O pe ide = o (7)

Donc la valeur moyenne du potentiel est

2
T .
ag mag

On peut vérifier que la valeur moyenne de ’énergie cinétique est donnée par

2m

= ﬁ _[7 T —Vie)v* (x)dx = — = —
Ec—< >—/O $@)(H —V(@)* (e)de = By — 2By = By (9)

On trouve donc que 2E. + V. = 0 qui est une version du théoréme du Viriel pour
les systémes de mécanique quantique.

Ce théoréme, énoncé par Rudolf Clausius en 1870, dit que pour un systéme en
équilibre dynamique ’énergie cinétique est égale a la moitié de 'opposé de 1’énergie
potentielle : 2F.+ E, = 0. Le résultat obtenu dans cet exercice peut étre démontré
en toute généralité en mécanique quantique.

En posant x = apé le Hamiltonien devient

. 12 > 2
i (e ) "o

En remplagant 1, (§) = exp(—&A,)yn(§) dans 'équation de Schrédinger H V(&) =
E, (&) on obtient :

d?y,, dy, 2 E,
In 9 y+§yn:yn(Ai—)=0. (11)

de? "de¢
Ot l'on a utilisé que \2 = E,,/E1.

En injectant le développement en série de y,(£) dans 1'équation différentielle
on obtient

D eq ((g+8)(g+s =172 =2\ (g +5) — DETTT) =0 (12)

q>0

cos(s — DET2+ 3 €7 (ea(g+5)(g+ 5 +1) — 2¢4(An(g +5) — 1)) = 0.
q=0
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Ce qui implique le systéme d’équations

cos(s—1) = 0 (13)
Cqr1(q+9)(g+s+1) = 2¢c4(M(qg+s)—1).

Comme ¢y # 0 et comme y,, doit tendre vers 0 quand £ tend vers 0, on a forcément
s=1.

Ce qui donne pour les autres termes
q(q+ 1)cg =2(ghn — 1)cg—1 - (14)

Si le second terme de cette équation ne s’annule jamais, la série est vraiment
infinie avec cq/cq—1 ~ 2A,/q quand ¢ — oco. Or exp(2&N,) = Z;io d,&7 avec
dq = (2\n)?/q!, donc dg/dg—1 = 2\, /q. Donc y,, () se comporte comme exp(2£A,)
quand & — oo. Dans ce cas, ¥, (§) se comporte comme exp({A,) quand & — oo,
ce qui ne peut pas convenir. Il y a donc forcément un entier ¢ = n pour lequel le
second membre de (14]) s’annule et donc A\, = 1/n, ce qui donne E,, = E1/n? Ily
a donc un nombre infini de niveaux d’énergie.

n correspond & l'ordre de 'orbitale atomique. L’expression de la fonction d’onde
radiale sphérique est

Yulw) = LED (”) s | (15)

2ay

avec L (x) = x—:!ez d%; (e~ %x"T%) les polynomes de Laguerre.

Nous avons résolu 1’équation de Schrodinger pour le nombre angulaire [ = 0 cor-
respondant & une fonction d’onde sphérique.



17. Corrigé PC5 : L'oscillateur
harmonique

Mécanique quantique (PHY 311)
Pierre Vanhove
PC du 27 mai 2015

1. Notations de Dirac et relations de commutation dans
I’espace des états

a) On vérifie aisément que pour A € C

(Xl (IP1) + Ald2)) = x(I¢1) + Alg2)) = (x[d1) + Ax|¢2) (1)

et par conjugaison complexe que

(1] +A{d2)x) = ((XI(I01) + Alg2)))" = ({xl91) + Alx|d2))" = (d1]x) +/\*<¢2!(x;
2

Bien str ces proprietes sont évidentes si 'on utilise la représentation intégrale
(xlo) = Jp(x( x) dz.

b) Si A € C alors au ket |[\%) alors pour tout bra (x| on a (x|A¢) =

Ja (@)X} = A fy (x(2))b(w)dz = Axlé). Done [\1) = A[). En utili-
sant que (A )T = (\p] et que (JA )T = X\ (3| on trouve donc que (Ap| = X* (1]

¢) On considére |¢) = Alyp). Comme pour tout bra (x| on a (x|¢) = ((¢[x))" et que
{x|¢) = (x|A|¢) on en déduit que (¢| = (p|AT.

d) On applique le résultat précédant & |¢) = A\w) et \w) B|x) pour tout |x). Alors
(¢| = (x|(A- B) mais c’est aussi (p|AT = (y|BT - Af.

e) i) Puisque (x|#|¢) = [ x(z)*2z(x)dx avec € R clairement Z est hermi-
tien. Pour p on raisonne de maniére équivalente dans ’espace des p ou 'on a

(xIplv) = Jp X( p)dp avec p € R.
ii) On caleule (x|[2,][v) = (x|& - DY) — (xlp - 2l¥) = [p x(2)*(x}0s —
%83356)1/1( Jdz = ih [p x(x)*(x)dx. Vrai pour tous bra et ket donc vrai

comme operateur
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17. Corrigé PC5 : L’oscillateur harmonique

2. L’oscillateur harmonique
a) Comme Hy¢(z) = E¢(x) alors

h? 9%¢p(x)  mQ? B
T om 0a2 + ?Qﬂx) = E¢(r) (3)

b) L’analyse dimensionnelle indique que

L] = mots (1)

2m

Comme [p] = [A/x] on en déduit que

donc X et sans dimension. Puisque

{ r:mj -

on a que P est sans dimension.

J Pl
m) x

L’Hamiltonien réduit H = Hy/(hQ) est simplement donné par

=1 (6)

~ 1 - ~
H=3 (P + X?) (7)
Considérons le commutateur
. . 1 ih
[XP - PX] = Slap—pi] = 7 =i (8)
c) On a
( Lx '15))T Lkt phy=af (9)
— 7 = — — =a
V2 V2

otll nous avons utilisé que X et P sont hermitiens comme montré dans ’exercice 1.

On montre que

1 . . . o
[a,a'] = X +iP, X —iP] = gl - —i[X,P]=1 (10)
On a aussi que

—adla =[a',a)a = —a (11)
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2. L’oscillateur harmonique

et
N, al] = [afa,a] = afaal — afala = atfa, af] = af (12)

On considére maintenant

. 1o 2o = 2+ P? iy oA a1
N=dla==(X —iP)(X +iP) = A £[X,P] =H-_- (13
2 2 2 2
ou l'on a utilisé que [X, P] = .
d) i) On considére
al¢)* = (dvlaTalg,) = vigu|on) = v (14)

ot I'on a utilisé que (a|p, )T = (¢,|a" et ¢, est normée (¢,|6,) = 1. Donc
v > 0. Si v =0 la norme est nulle donc al¢,) = 0.

ii) La norme est donnée par

|&T|¢IJ>|2 = <¢V|d&”¢u> = <¢l/|(]‘ +dT&)|¢V> = (1 + V) <¢V’¢V> = (1 + V) (15)

iii) En utilisant la relation de commutation entre a et N on a

Nal¢,) = (aN — a)|¢y) = (v — 1)aléy) (16)

iv) On raisonne par ’absurde et par récurrence. Sion a un |¢,) avec les propriétés
ci-dessus alors |¢,_1) satisfait les méme propriétés avec la valeur propre v — 1.
Si v n’est pas enti§r il existe un entier ng tel que |¢,_p,) aura la valeur propre
v —mng < 0 pour N. Mais on a démontré que les valeurs propre de 'opérateur
nombre N sont positives ou nulles. Donc v est un entier naturel nyg.

e) La relation de commutation entre a' et N donne
Naf|gn) = (@'N +aN)én) = (n+ 1) én) (17)

On voit donc que tout n > 0 est autorisé comme valeur propre de I'opérateur
nombre N.

L’opérateur a s’interpréte comme un opérateur de destruction de quanta et 'opé-
rateur af comme un créateur de quanta.
f) L’état fondamental est I’état a 1’énergie la plus basse. Comme ’énergie (réduite)

est donnée par n + 1/2 avec n > 0, I'état fondamental est caractérisé par n = 0.

Comme n = 0 on a alors que a|¢g) = 0.
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Si (x| est un bra arbitraire alors

+oo
0 = (xlalgo) = / X (@)ado(z)da (18)
+oo 100 . R
= [ X @ ($+iP) ontwyis (19)

oo 1 mS2 .1 0
- /_OO X (tT)ﬁ ( hl’-FZ\/max) ¢0($)d1‘ (20)

Comme cette intégral est nulle pour tout x alors

ms) .1 0
( hx—l—zm%) ¢o(x) =0 (21)

on en déduit que ¢g(z) satisfait 'équation différentielle

84() + " ago(w) = 0 (22)

La solution est la gaussienne

mQ 2

¢0($) =de” m” (23)
La constante A est fixée par la condition de normalisation

1= [T ont@ar =2 = (”;ff) (24)

On remarquera qu’il n’y a qu’une seule solution. Donc le fondamental n’est pas
dégénéré.

i) On a montré que N(a|¢n)) = (n — 1) (d|¢,)) mais on a aussi que N|g,_1) =
(n —1)|¢n—1). Les niveaux étant non dégénérés (voir plus bas pour des préci-
sions) on en déduit que a|¢,) = A|pp—1).

= |d‘¢n>|2:|)“2<¢n71|¢n71> (26)

donc |\|? = n donc A = /n.
On procéde de méme pour a'|¢,) pour en déduire que af|¢,) = v + L|dpi1).
Remarque sur la dégénérescence des niveaux d’énergie. On a vu que 'action

de n opérateur a sur un état |¢,) donne |¢g). On a vu que le fondamental
n’est pas dégénéré donc les niveaux excités ne peuvent pas étre dégénérées.



ii)

iii)

2. L’oscillateur harmonique

Comme a'|¢,) = vn + 1|¢,11) alors

6n) = jm (ah"|60) (27)

ou en représentation x

bul@) = —= ( LI 8) 0(a) (28)

- V/mQhox

On peut aisément inverser les équation exprimant a et af en fonction de X et
P pour obtenir

X = (&Ha); P:\%(a*-&). (29)

Sl

On remarque que
Xlon) = = (ViF 1onsa) +vitlon-1) (30)

et

p’¢n> = \}i (\/ n+ 1‘¢n+1> - \/ﬁ’¢n—1>) (31)

On a aussi la relation d’orthogonalité (¢, |¢n—1) = 0. Donc On a alors que

(GnlX|60) = $(¢n+1<¢n|¢nﬂ>+¢ﬁ<¢n|¢n1>)=0 (32)

ce qui montre que la fonction d’onde est centrée en zéro. De méme la valeur
moyenne de P est nulle. On a que

(6alX%100) = (80 X) (X]n)) = + 3 ()
ainsi que
(6al P10} = (90| P)(Plon) = n + 3 (34)
Donc dans l'état |¢y,)
AX=AP=n+ (35)

et en revenant aux opérateurs & et p

> (36)

1 h
Az Ap=nh =) > —
x Ap (n—|—2) 5

Seul le fondamental, pour lequel n = 0, sature I'inégalité d’Heisenberg.
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18. Corrigé PC6 : Expérience de Stern
et Gerlach

Mécanique quantique (PHY 311)
Pierre Vanhove
PC du 3 juin 2015

1. Théoréme d’ Ehrenfest

a) On utilise

. d(A) (| pdlv)
) — (il )Aw i (i) 0
comme dv) ]
il = Ay —int = (I ©)
On a utilisé que le Hamiltonien est hermitien AT = H. On en déduit que
d(A - - -
n T — (I Al) + (wIA 1Y) = (WIIA, H)l) ®)

On peut aussi établir cette relation en utilisant la représentation des fonction
d’ondes ¥(t, x), selon

- [, g o i) o

- / (thA¢(t,x) + ih* (¢, JU)Ad?ﬁ(t, x)) B
R3

- ¥ (t, ) (_ﬁui n Aﬁ) Wt z) . (4)
R3

ih

b) Pour une partlcule de masse m dans un potentiel V(z) le Hamitonien est donné
par H = +V( ), donc

d<X> ; | N
h=" (X, ])—%Q ; 2]>—E<[X7P]P>—E<P> (5)
ot I'on a utilisé que [X, P] = ih. Donc
Xy 1 .
=By, (6)
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18. Corrigé PC6 : Expérience de Stern et Gerlach

De méme on a

L d(P . - o
im0 — b ) = ([P V(X)) = —in (9.7/(X)) @
ol I'on a utilisé que P = —ihV, pour un mouvement & une dimension. Donc
(P L
W @), 0

¢) On a clairement que 7 E = Aa/v E > 1/2|(|[A, H||)| bl (w|[A, H]|[W)| ™" = /2.
Le temps 7 correspond au temps caractéristique d’évolution du systéme.

2. Moment cinétique

2.1. Description classique : précession de Larmor

_e
2m

a) Le moment magnétique de I'électron 7 = —s&7AF = v L ot v = —e/(2m) et

L=7A P est le moment cinétique

b) Un dipole magnétique soumis & un champ magnétique B subit la force F = _’([i

B') =[- VB. Puisque le champ B satisfait I’équation de Maxwell V-B=01la
force est donc nulle.
On ne peut pas avoir de champs magnétique non constant uniquement selon la
direction &, car I'équation de Maxwell V - B = 8, B, + 8,B, + 9.B, + 8,B, = 0
n’est pas satisfaite. On peut considérer un champ magnétique B = B.é. + B,é,
de sorte a ce que 0, B, + 0,B, = 0. Il faut également que B, < B, pour ne pas
affecter le nouvement de ’atome selon la direction Oz.

c) Dans ce cas les particules sont soumise a la force F' = u,0.B, ¢é,. On s’attend
& observer une ligne continue d’extension déterminée par la largueur du faisceau
incident.

2.2. Description quantique

d) Avec 'expression pour le vecteur @ = (sin cos @, sin @ sin ¢, cos #) alors

o cosf sinfe ¥ )
Pa=Ho \gngeie —cosh |-

On remarque que ﬂ% = I est la matrice identité. On en déduit que les valeurs
propres de iz sont —ug et o avec multiplicité une. Les vecteurs propres sont

. 0 4 0 , 0 4 0
I+)z = e "% cos 5]4—} +¢'% sin §|—>; |—)z = —e "% sin §H—> +€'% cos §|—> .
(10)
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e)

h)

2. Moment cinétique

Les états propres de g, sont obtenus en prenant § = w/2 et ¢ = 0, soit
|+)2 = (|+)£]-))/v2, donc si le systéme est dans 1’état |+), puisque |(4+[+),|? =
[(+|=)z|? = 3 les deux valeurs de spin selon (Oz) sont trouvées avec une proba-
bilité de 50%.

On mesure alors fi,, les états propres de cet opérateur sont obtenus en prenant
0 =7/2 et w=m/2s0it [+)y, = —eT (|+)o +i|—)a)/V2 et |=)y = T (|+)s +
i|—)2)/v/2. Encore une fois, puisque |, (€ |ez)2|* = 3 pour tout €, = +1 et ¢, = +1,
on trouve les deux valeurs :t% du spin selon (Qy) quelque soit le résultat de la
mesure du spin selon (Ox).

Le théoréme d’Ehrenfest pour chaque composante de 'opérateur

W) _ (i, 1) = 0. (1)

th

car le champs B est selon axe (Oz). Pour les autres composantes

d{fiy oA A . N

i <dt L — ([, £1)) = =By ([, f:]) = 2o poly) (12)
car [fig, fiz] = —2ipo fly. Egalement on a

_d{j o o ) )

n®Bu) (G, A1) = By (g, ) = ~2iBo o). (13)

car [fly, fi-] = 2ipo fiz- On peut donc réécrire ces équations sous la forme vectorielle

—— = Bx{i). (14)

dii 5 -
CT;; =—DB x fi. (15)
i) L’équation de Schrodinger zhdlw = H|t)(t)) implique que
ih (L (t)+) + L (t)|=)) = —Bopo (c+(t)|+) — c~(t)|-)) (16)
dOHC . Bougt - Bougt
cr(t) =cp(0) e c_(t)=c_(0)e """ n . (17)
ii) A Iinstant la fonction d’onde prend la forme
i oﬂot i ouoi
() = i (0)e ™7 [+) + ¢ (0)e =) (18)
Comme la fonction d’onde est normalisée c;(0)? + c_(0)2 = 1 on a donc
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18. Corrigé PC6 : Expérience de Stern et Gerlach

I'identification avec la solution |+); donnée dans

2B
o(t) = }(;,uo t; ¢y (0) =cos—=; c¢_(0) =sin —. (19)

iii) La solution correspond & un spin tournant a vitesse constante dans le plan
équatorial orthogonal & Oz, le systéme se comporte comme de la lumiére
polarisée circulairement.
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19. Corrigé PC7 : Dynamique d'un
systeme a deux niveaux

Mécanique quantique (PHY 311)
Pierre Vanhove
PC du 10 juin 2015
1. Oscillation de Rabi

On introduit les matrices de Pauli déja rencontrées en PC6

S S () N (R B

a) Hy est visiblement égal a

- hwo (0 1Y hwo .
=" (o 1) =5 .

et le potentiel V(¢) est donné par la matrice

V() = % (8_% ezgt> _ % (cos(wt) 64 — sin(wi)d,) - (3)

On constate donc que 2V (t)/(hwi) est la transformation de &, part une rotation
d’angle —wt autour de 'axe (Oz)

cos(wt) 6, — sin(wt)a, R(t) 6, R (1);

_jut
Rty = ewo— (¢ 7 0 ) (4)

- cwt
0 ez

Comme [Hy, R(t)] = 0 car Hy ne dépend que de &, et que R RT = I, on peut donc
écrire

A(t) = R(1) (o + "6, R1(1). )

Donc nous obtenons le Hamiltonien indépendent du temps

2 2 2 w1 —wo

fllzzm@—khm&x:h(w() “’1). (6)

81



19. Corrigé PC7 : Dynamique d’un systéme & deux niveaux

b)

82

On remarque que si [1(t)) = R(t) |x(t)) alors ’équation de Schrodinger
LdlY) -
Zhﬁ = HIY) (7)

implique que |x) satisfait I’équation de Schrédinger

d - dR
mg) = <R(t)THR(t) — mR(t)’rdf)> IX) . (8)
Si |1h(t)) = U(t)[4(0)) en injectant dans I'équation de Schrédinger on obtient
def) — AWMU, ()

Si H est indépendant du temps on intégre cette équation différentielle directement

~

0(t) = 0(0) exp(—z%t) (10)

par définition a Pinstant ¢ = 0 on a U(0) = I I'identité.

Pour le systéme & deux niveaux on a le Hamiltonien effectif

Hop = ROOTHER(t) — ihR(t)Td}Zt) . (11)

avec pour R(t) = exp(—iwtd,/2). On trouve alors que

Heff =

o>

(((.U(] — w)&z + wu}x) . (12)

On introduit maintenant I'opérateur d’évolution U(t) tel que |x(£)) = U(t)|x(0)).

On déduit de I’équation de Schrodinger Montrer que U (t) satisfait I’équation de
Schrédinger R

@) . &

O _ fawi. (13

Comme Heg est indépendant du temps car

ih

N h . .
Heg = B ((wo —w)os + w164) (14)

Iopérateur d’évolution est donné simple en intégrant I’équation différentielle sous

forme matricielle .
£ Hgt
U(t) = exp (—z’ hH ) : (15)




1. Oscillation de Rabi

avec R(t) = exp(—iwts,/2) f](t)

On a utilisé que 65 =1 donc

- T (2) +3 @ (§)+ %

n>0 n>0
0
= cosi]l—i—isini&y. (16)
et que
(O, 0y] = 20623 [62,0,] = 2i6y; [0y, 6] = 206, . (17)

Afin de calculer I’exponentielle on diagonalise H selon

- - Q
H= P2 (wow 5, + % &x> = % (cos 06, + sin06,,) (18)

avec Q% = (wo — w)? + w? et cosf 1= (w — wp)/Q et sinh = w; /2. On reconnait
laction d’une rotation d’angle 6/2 selon 'axe (Oy) sur &, donc

hey e 129 &, 5% (19)

ﬁ:
2

Comme [6,6,] = 2i6, nous avons le résultat voulu. Maintenant I’exponentielle
est facilement obtenue avec le résultat

U(t) = e300 ¢=4%5°0= ¢i30y (20)
L’opérateur d’évolution est donné par

U(t) — ei%&ze—ig&y e—i%&z ei%&y (21)

g) 1l suffit d’expliciter le produit des exponentielles et d’utiliser la formule consé-
quence que 62 =T o
e =cosal+isinady,. (22)

On en déduit donc

ot Qt Qt
Ut) = 70 (cos - [+ ¢sin > (cos 06, + sin 9&1)) . (23)

h) L’amplitude de transition |1) — |2) s’écrit

Ap(t) = QU@
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19. Corrigé PC7 : Dynamique d’un systéme & deux niveaux

84

Cwt Ot Qt
= <2|627t"z (cos 5 1) + isin? (cosf|1) +sin6|2)))

s wt

Q
= isinfsin e e 2. (24)
2

D’ou

i)

ii)

iii)

2 0
Pia(t) = (21 = sin? 0sin 0t = oL sin? (;) (25)

Pour w < wy (excitations de basse fréquence) alors Q% ~ w2 + w?

2 2 2
w . wy +wit
Pio(t) ~ ——1— sin® < 02 1 ) (26)

Dans le cas courant ou w1 < wp alors Pja(t) =~ :‘j—z sin?(wot/2) qui décrit
une oscillation & la pulsation de Bohr wy avec une torés faible amplitude. Si
w1 > wo, qui correspond au cas ou les deux niveaux atomiques sont presque
dégénérés a 1'échelle de wy alors Ppa(t) ~ sin?(wt/2). L'oscillation est maxi-
male & une fréquence caractéristique du couplage avec le champs extérieur.
C’est une oscillation du type de Rabi

Si w = wp nous sommes sur une résonance. Alors

Puo(t) = <sin “’21t>2 . 27)

Le fait remarquable est que 'oscillation a résonance ne se produit nullement
a la fréquence propre du systéme wgy mais & celle mesurant le couplage avec le
champ extérieur.

w > wp on a une excitation de haute fréquence. Dans ce cas

2 2 2

w . w +wit

PlQ(t) >~ m Sln2 <2l> . (28)
1

Si wy < w alors il s’agit d’une oscillation forcée de faible amplitude



8. Corrigé PC8 : Cryptographie
quantique

Mécanique quantique (PHY 311)
Pierre Vanhove
PC du 18 juin 2014

1. Etats de spin %

a) Un calcul direct donne

N h 1 0 ) 01 h (cosf sinf
17.:5 (C089(0 —1)+Sm9<1 O)>_2<sin0 —cos@)' (1)

b) On remarque que 5‘3 = %2 I, donc les valeurs propres sont j:g. Et elles ne peuvent
pas étre dégénérées sinon l'opérateur serait proportionnel & opérateur identité

+h/21.

c) Les états propres sont

0 0
low = +1) =cos i\az = +1) +sin 5]02 =-1) (2)
.0 6
o, = —1)=—sin §|O'Z = +1) + cos 5]02 =-1) (3)
On remarque que ces états sont normés car (o, = +1|oy, = +1) = (o, = —1|oy, =

—1) = 1. Si la mesure a donné :l:% le systéme se trouve dans l’état propre |o, =
+1).

d) Par définition p = |(o, = +1]|o, = +1)|%. Les probabilités sont donc p} =
cos2(0/2) et p, = 819112(6?/2). On peut trouver les valeurs +2 et —2 avec la proba-
2

bilité cos? g et sin” 5 respectivement.

e) 1) On veut calculer la probabilité de commencer dans la configuration de spin
|o, = +1) et terminer dans la méme configuration aprés une mesure du spin
selon la direction u. On a les deux cas suivants :

1) |oz = 4+1) = |ou = +1) = |02 = 41) de probabilité P,y = cos?(6/2) x
cos?(6/2) = cos*(0/2),

2) |o. = +1) = Jou = —1) — |o. = +1) de probabilit¢ Py = sin*(6/2) x
sin?(6/2) = sin*(0/2).
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8. Corrigé PCS8 : Cryptographie quantique

ii) La probabilité totale cherchée est Py = cos*(6/2)+sin?(6/2) = 1 (1+cos?§).

iii) En fait on trouve le méme résultat parce que par symétrie P~ = P,,. En
revanche P = P_| = %sin2 0. On vérifie bien que Py + P4 = 1.
2. Etat intriqué de deux spins

a) La relation entre les états |02 = 1) et |0¢ = £1) sont reliés par une rotation (de
méme pour b) selon

ot =+1) = s (lof =41+ [0t = 1)
7= =1) = s (clo? = 1)+ o = —1)). ()

Ce changement de base s’obtient facilement en remarquant de I’axe Ox correspond
au vecteur caractérisé par les angles ¢ = 0 et § = 7/2 sur la sphére de Bloch.
L’expression donnée ci-dessus est obtenue & partir des résultats de la PC6. On
vérifie aisément que

0f = +1) @ |og = +1) + |0 = ~1) @ |oy = -1)
1
= 5 (o2 = +1) + 02 = —1)) ® (jo = +1) + |o? = -1))
1
+ 5l =41 +of = —1)) ® (=loz = +1) + |07 = -1))
= lof =+ ® ol =+1) + |0t =-1) @ ol = -1) (5)

b) i) On utilise les résultats de I'exercice 2. Aprés la mesure on peut trouver les
valeurs +//2 mesurées sur les axes Oz ou Oz avec les probabilités % indépen-
damment de la valeur de 6.

ii) Si on mesure le spin de a selon I'axe Oz on utilise I’état |X) donné par

2= (ot =t ell=t) +lt=-Doll=-1) ©

V2

car cet état est écrit par rapport aux états propres de .S, pour a. Ainsi pour
un mesure du spin selon Oz, I’état se trouve projeté

h

+y ¢ lof=+1)® ol =+1)
h
—5 lo¢ = —1)® |o? = —1). (7)

Pour une mesure du spin de a selon 'axe Ox on utilise alors 1'état

2= (ot =tDell=+)+lt=-Heli=-1) @

V2
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d)

i)
ii)
iii)

iv)

2. Etat intriqué de deux spins

et aprés mesure le systéme se trouve dans ’état propre

h
+y ¢ lof=+1)® oy =+1)

h
—5 ¢ li=-1)e lob = —1). (9)

. =0, 6, =0 : mesure —i—% avec probabilité 1 et —% avec probabilité 0

0
0, =0, 6, = w/2 : mesure i% chacune avec une probabilité
0,

D= NI

=7/2, 0, = 0 : mesure :l:g chacune avec une probabilité

0, =7/2, 0y = m/2 : mesure —|—% avec probabilité 1 et —% avec probabilité 0

Les mesure donne avec certitude le méme résultat lorsque le spin est mesuré selon

le méme axe pour a et b.

i) Si Alice a mesuré i/2 le systéme est dans l'état |0? = +1) @ |62 = +1).

ii)

iii)

Comme |0? = +1) = cos(#./2)|0c¢ = +1) — sin(6./2)|c f,f —1), lespion
peut trouver les valeurs //2 avec la probabilité (cos(f./2))? et —h/2 avec la
probabilité (sin(f./2))%. Aprés la mesure de I’espion le systéme est dans 1'état
lo¢ = +1) ® |0 = £1) selon la valeur trouvée par I’espion.

Si Alice a mesuré —h/2 le systéme est dans l'état [0¢ = —1) ® |02 = —1).
Comme |00 = —1) = sin(f./2)[0¢ = +1) + cos(6./2)|0¢ = —1), l'espion
peut trouver les valeurs i/2 avec la probabilité (sin(f./2))? et —h/2 avec la
probabilité (cos(f./2))%. Aprés la mesure de l’espion le systéme est dans 1'état
lo¢ = —1) ® |o¢ = £1) selon la valeur trouvée par l’espion.

Si Alice a mesuré +h/2. En utilisant maintenant que |0¢ = +1) =
cos(6./2)|o? = +1) + sin(6./2)|6% = —1) et |0¢ = —1) = —sin(6./2)|0o? =
+1) + cos(f/2)|0? = —1), alors Bernard mesurera la valeur +% avec la pro-

babilité cos? 925 cos? 9" et la valeur —% avec la probabilité cos® 925 sin? 02" si

I’espion a mesure la valeur +2 Sl lesplon a mesuré la valeur —5 leb proba-

20 20 29

bilité de Bernard sont sin 5 Cos pour

la valeur —%.

5 sin? % pour la valeur —i—g et sin

Si Alice a mesuré —h/2. Alors Bernard mesurera la valeur +% avec la probabi-

lité cos? %‘f sin? %e et la valeur —g avec la probabilité sin? % sin? % si 'espion
a mesure la valeur —{—2 Si I’espion a mesuré la valeur —3 les probabilité de

Bernard sont cos? 92 sin? % pour la valeur +% et cos? 92 cos? % pour la valeur

h

5
La probabilité qu’Alice et Bernard trouvent le méme résultat +%4/2 est

06 0@ ].
Pb.) = cos? 5} + sin? 5 =3 (1 + cos? 96) . (10)

La probabilité de trouver le méme résultat —h/2 est le méme par symétrie du
probléme.
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Corrigé PCS8 : Cryptographie quantique

iv) Pour un choix d’angle uniforme sur [0, 7] la probabilité moyenne est

v) Pour seulement le choix 6. = 0 et 6, = 7/2 on trouve le méme résultat.

(11)



9. Corrigé PC9 : Molécule de Benzéne

Mécanique quantique (PHY 311)
Pierre Vanhove
PC du 24 juin 2015

Lemme : commutation d’opérateurs

1l suffit d’écrire que G(H|¢,)) = HG|¢n) = gnH|pn) donc H]gbn> est un état propre
de G. Comme les états sont non dégénérés on en déduit que H|p,) = An|dn).
1. Un modéle simple pour la molécule de benzéne

a) si¢q=/{N avec £ € Z alors

N dink N
den' =Y 1=N (1)

k=1 k=1
sinon i
N 1mNgq .
227‘rkq 27,7rq 1 —€é N 2imq 1 — 62Z7Tq
z :e 2imq =enN 2imq = O (2)
=1 1—e™~ 1—e™~

b) L’hamiltonien est donnée par la transition de l’électron entre les sites de plus
proche voisins par effet tunnel. On vérifie par exemple que si I’électron est sur le
site 2 donc dans I'état |2), le potentiel tunnel W donne que ’électron peut sauter
sur le site 1 ou 3 W[2) = —A(|1) + [3)). Cela cote 1’énergie —A.

¢) Clairement pour tout |n) on a que RS|n) = |n + 6) = |n) oi nous avons utilisé
la périodicité modulo 6. Donc R® = I. Les valeurs propres sont donc les racines
sixiéme de 'unité )\2 = 1, soit A\; = €!™/3 avec 1 < k < 6.

d) En utilisant que R|pg) = Agldr) et la décomposition sur la base |¢p) =
Zgzl Ckplp) on en déduit que ¢, = )\7_pck71. Avec la condition de normalisa-

tion (¢ |ox) = 22:1 |k pl?

= 6 |ck.1|> = 1 nous déduisons que

68) = f ZV lp). (3)
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9. Corrigé PC9 : Molécule de Benzéne

e) On vérifie que

6
(Gelow) = (;a SO0l Z ()™ 1)
AR o
= T el (4)
p=1p'=1

comme (p|p’) =0sip#p and 1sip=yp alors

6

(Gelow) = 5 S i) o)

p=1
qui s’annule en utilisant le résultat de la question a).

Un autre approche est la suivante. On calcule <¢k\f3|¢>k/) de deux facons différentes.
L’une en faisant agir R sur |¢y), ce qui donne

(k| Rldwr) = N (| ) (6)

et I'autre en faisant agir R sur le bra (¢;|. Pour cela il faut remarquer que (cf la
PC5) que

(kIR = (Rl |y))! M)
maintenant
6 f 6 .
- (S n) = s =g ®
n=1 n=1
donc

(orl B = O\ )T = () 0kl = (ol (9)
car les A\, sont de module 1, ie A\yA; = 1. Ainsi on trouve que
(Dk| Rlgrr) = Mo ( Dkl dnr) = M (Brldnr) (10)

si k # k' alors A\ # A\ Aot (¢|dp) =0

f) L’opérateur R est donné par R = Y et \n + >< |, on remarque que R~ =
Rt = Zn L In){n + 1|. Donc H = Eol — A(R+ R™") ce qui permet déduire que
RH = HR. On remarquera que T=3°_ |n)(n|.

g) D’aprés le lemme on en déduit que les |¢y) sont états propres d’énergie Ej de
I’hamiltonien. Donnés par

Higr) = (Eo — 2Acos< 5 ) (11)
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2. La molécule de cyclooctatétraéne

Ce qui donne que les niveau d’énergie par ordre croissant et avec leur multiplicité
E6:E0—2A; E2:E4:E()—A; E1:E5:E0+A; E3:E0+2A (12)

h) Il faut développer |1) sur les |¢r) qui sont des état propres de I’Hamiltonien

i) On calcule |{1]¢(t))|? et on cherche si il existe un instant ¢ > 0 pour lequel cette
quantité vaut 1. On trouve que

1= (1) = % (cos(2wt) + 2 cos(wt))? (15)

ot 'on a posé w = A/h. Cette équation a pour solutions

wt = 27n; nez. (16)
j) On répartit les 6 électrons en plagant 2 électrons par niveaux en commengant par

les niveaux de plus basse énergie. On a donc 2 électrons sur les niveaux Eg, Fo et
Ey.

Eﬂ
Eq+2A —
Eg+A|— —
Ey—A |4+ 4
Bo-24| 4y

FIGURE 1. — Niveaux d’énergie du Benzéne

2. La molécule de cyclooctatétraene

Cet exercice nous avons maintenant une symétrie d’ordre 8.
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9. Corrigé PC9 : Molécule de Benzéne

a) L’opérateur de rotation satisfait maintenant R® =1 donc les valeurs propres sont
des racines huitiéme de I'unité \® = 1, ie Ay = exp(imk/4) avec 1 < k < 8.

Les niveaux d’énergie sont donnés par Ey = Fy — 2A cos(kmw/4) ce qui donne par
ordre croissant

Ey = Ey—2A, Ey=F;=FEy—V2A, Fy=Es=EFE,,
Es = Es=Fy+V2A, E;=FEy+24 (17)

b) Comme dans l'exercice précédant

S

8
w) = = > H o) (13)
k=1

c¢) La question du retour de I’électron a la position 1 devient alors

1= [(1]6()]? = 1716(1 1 2 cos(v2uwt) + cos(2wt))’ (19)

La présence du v/2 fait que cette équation n’a pas de solution et la propagation
de I'électron n’est pas périodique.

E A
FEy+2A -

Eo+V2A | — —
E, |4+ 4
Ey—V2A| - 4
Ey—2A V.

FIGURE 2. — Niveaux d’énergie du cyclooctatétraéne
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10. Corrigé devoir maison O :
transformée de Fourier et relation
d’incertitude

Mécanique quantique (PHY 311)
Pierre Vanhove
PC du 22 avril 2015

Les corrections sont en italiques

1. Particule libre

On considére une particule libre de fonction d’onde (¢, x) et de transformée de

Fourier 9 (t, p) selon les notation de la PC2.

a) EcriNre Péquation d’évolution dont est solution (,p). En déduire (¢, p) a Daide
de 4(0, p).
La transformée de Fourier inverse de ’équation de Schrodinger s’écrit

LoY(t,p) PP -
ih ot = %¢(tvp)a (1)
d’ot Uon déduit )
3t = 0. p)exp (i) )

Comme Uénergie de la particule libre est £ = p?/(2m) on trouve l’évolution tem-
porelle naturelle (t,p) = (0, p) exp(—iE?).

b) On appelle py et Apy respectivement la valeur moyenne et 1’écart quadratique
moyen de 'impulsion & Uinstant ¢ = 0. Calculer (p)(¢) et Ap(t) & tout instant t.
Interpréter physiquement le résultat obtenu.

Le module de la fonction &(t,p) étant indépendant du temps, il en va de méme
de la valeur moyenne de toute fonction de p. Donc (p)(t) = po et Ap(t) = Apog.
On retrouve la le fait que Uimpulsion d’une particule libre se conserve (principe
d’inertie), résultat également valable pour toute fonction de 'impulsion.

¢) A l'aide du résultat de la PC2 exprimer (z)(t) en fonction du temps. Comment
ce résultat se compare-t-il & celui obtenu par la méthode de la question 2.3c de la
pPC27?
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10. Corrigé devoir maison 0 : transformée de Fourier et relation d’incertitude

D’apres le résultat de la PC2, on a

+oo 7,
@ = [ w*<t,p>maf§,2p)dp (3)

ou lon a utilisé la propriété d’isométrie de la transformée de Fourier et que la
transformée de Fourier de xi)(t,x) est ihdy(t,p)/Op. Or, comme on a

dP(t,p) _ 99(0,p) exp <_i P t> pt -

Op dp

—i—(t 4
i (tp) (4)
d’ot l'on déduit

+oo 7 ~+00 B
@i = [ ¢*<p,o>m§]f<p,o>dp+t J R (5)

— 00 —0o0

3=

so01t
(£)(t) = ()(0) + 2ot (6)

La position moyenne de la particule obéit a une variation linéaire, en accord avec
le principe d’inertie (impulsion constante). Dans la suite, on utilisera simplement

(z)(t) = 2t (7)

m

Dans toute la suite, on supposera que 'origine de ’axe des x est choisie telle que
la valeur moyenne de la position & l'instant initial soit nulle : (z)(0) = 0.

d) De méme, écrire Pexpression de (x2)(t) a laide de la fonction 9(t,p) et de sa
dérivée par rapport & p, puis montrer que ’on obtient un polynéme du second
degré en t. Pour simplifier la suite des calculs, on supposera que ce polynéme
atteint son extremum en ¢t = 0 et on déterminera le coefficient du terme en t2. En
déduire la variance Az (t)2, que 'on exprimera & I'aide de Axg = Ax(0) et de Apg.

La transformée de Fourier inverse de xi(x,t) étant ihg—;ﬁ, on a d’aprés Parseval-
Plancherel la relation

2 t) = oo -har&(tﬂﬁ :
(@ ><>—/ i)

—00

dp (8)

A Uaide de l'expression de g% obtenue en précédente, on en déduit que (z%)(t)
est un polynome de degré 2 en t

+oo 2 +oo ~ .
(@)() = t2/ :12|¢(t,p)l2dp+2t/ Re (iw(t,p)w> dp

—o0 o op
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2. Oscillateur harmonique

- 2
9¢(0,p)
Tp dp (9)

+o0
f
—0oQ
Un choiz judicieux de l'origine des temps permet d’annuler le coefficient du terme

linéaire, ce qui signifie que (x2)(t) est une parabole dont l'extremum est en t = 0.
On en déduit la relation

2
(@0 = (@20 + L] ¢ (10)

En utilisant le résultat de la question précédente, on obtient finalement la variance

Aa(v = (&2)(0) — (@£)(0)° = (22)(0) + L0 _ pgp B2y

e) Donner une valeur approximative de Axz(t) lorsque ¢ — +oo. Interpréter physi-
quement le résultat obtenu.

Pourt — oo on a

Az(t) ~ %t. (12)

La dépendence linéaire en Apg/m suggere l'image classique d’un ensemble de pro-
jectiles groupés initialement dans une bande Axy autour de xq, les vitesses de ces
projectiles étant réparties dans une bande Av = Apg/m autour de la vitesse de
groupe du paquet vo = po/m. Du fait de la dispersion en wvitesse, des projectiles,
se trouvant initialement au méme point, se trouvent uniformément répartis dans
une bande Avt au bout du temps t. L’impulsion moyenne py et la dispersion Apg
ne varient pas au cours du temps car 'tmpulsion est une constant du mouvement
pour une particule libre.

2. Oscillateur harmonique

On considére dans cette partie le cas d’un potentiel harmonique V(x) = %mexQ

a) Ecrire les deux équations dont sont respectivement solutions les fonctions ¥ (x,t)
et P, p).

L’équation de Schrédinger s’écrit ici

Ht.x) _ W OPe(tr) L a2yt ) (13)

ROUtT)
! Ot 2m  Ox? 2

Par transformée de Fourier inverse, on obtient

OY(t, p)
ot

= 2]);77[;(75717) - ;mh2w2a2w(t’p) (14)

in 57
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10. Corrigé devoir maison 0 : transformée de Fourier et relation d’incertitude

b)

96

En exploitant ’analogie entre les deux équations obtenues a la question précédente,
montrer que

d(p) 2 [T - BOU(LD)

— = *(t,p)———=—=d, 15

TR N ULl matl (15)
Il sera utile de considérer la variable X = - ainsi que la fonction ®(t,X) =

Vmah(t, mwX).

Les deux équations obtenues a la question précédente ont exactement la méme
forme, le membre de droite étant la somme d’un terme quadratique et d’un terme
en dérivée seconde. Pour que [’analogie soit plus évidente, considérons la fonction

B(t, X) = V/mwih(t, mwX) (16)

On peut aisément vérifier que le préfacteur a été choisi tel que la fonction ®(t, X)
soit bien normée. On a

09(1,X) _
et
P?d(t, X) 0%
W = (mw)Q\/m 8 a9 (t mCUX) (18)

En remplacant dans [’équation dont @(t,p) est solution, on obtient

L00(t, X)  mPwrX? 1 55 1 9%0(tX)
ih ot =~ O(t, X) — imh W2 ax? (19)
ot od(t, X h? 9%®
D(t 1
ind2HX) +3 mw? X20(t, X) (20)

ot 2mox?
On retrouve I’équation de Schrédinger ! Ce resultat remarquable n’est naturellement
valable qu’en raison de la forme particuliére (quadratique) du potentiel harmonique.
A Daide du résultat des questions précédentes, on peut en déduire

1 +oo h 0P
= — d* X ————dX 21
m[m (1, )" 0% (21)

soit, en remplacant X par son expression

1 dip e ) 8%

ou encore n
dp) o [T~ h dW(t, p)
Bt [ a2 (23)



2. Oscillateur harmonique

¢) En déduire une relation entre d(p)/dt et (x). Comment cette relation se compare-
t-elle au résultat obtenu en mécanique classique ?

A Uaide de Uexpression de (x)(t) établie en PC2, on déduit de la question précédente
[’expression
d(p)

dt
Pour un oscillateur harmonique classique, la force exercée s’écrit —dV/dx =
—mw?z donc la deuzieme loi de Newton donne

= —mw?(z)(t) (24)

d—p = —mw’z
dt

soit exactement la méme expression !
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10. Corrigé devoir maison 0 : transformée de Fourier et relation d’incertitude
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11. Corrigé du premier devoir a la
maison

Mécanique quantique (PHY 311)
Pierre Vanhove

1. Courant de probabilité
a) La densité de probabilité p(z,t) = |[1(x,t)|? = ¥ (x,t)y*(x,t). On considére
ihBsp = ik Opb* + ik Bye* (1)

ou l'on a introduit la notation 9, f(x,t) := 0f(x,t)/0t. En utilisant I’équation de

Schrédinger
2

h
puisque le potentiel est réel on a

2

h
hoyp = —— (VAP — pAY* 3
ihdhp = —5— (" AU = YAV 3)
Expression de ’on compare a

h h
vV-J = (V" - Vi = Vi V) o oo (7Y - Vi — V- V)

= (Y*'V -V =4V - Vi)

= - (VAY —ypAYT)
= —8tp. (4)

Nous avons utilisé les relations suivantes

O f
Vf(’f‘, t) = (@;f)
0.f

V-J = 0,J"+0yJY+0,J°
V-Vf(rt) = (0240, +0)f=Af (5)

b) On écrit ¢(r,t) = p(r) x(t). L’équation de Schrédinger s’écrit

ihdx(t) p(r) = Hy(r,1) (6)
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11. Corrigé du premier devoir & la maison

avec

2
() = (=5 B(r) + V() ) 100 )

Comme le potentiel ne dépend pas du temps, et x(¢) # 0 ainsi que ¢(r) = 0 on
peut réécrire ces équations de la facon suivante

ihdx(t) _ —3mAp(r) + V(r)p(r) (8)
x(t) o(r)

Les variables t et r étant indépendantes cette quantité doit étre constante ce qui
implique les équations (6) et (7) de ’énoncé.

L’équation sur x(t) se résout simplement en

wt

x(t) =xoe ™  w=

E
=. 9)

Si la solution est stationnaire 1'énergie E est constante et p(r,t) = |p(r)|? est

indépendant du temps. Donc 0;p = 0 d’ou V - J = 0. Pour un probléme & une
dimension nous avons

V- -J=0=0,J(z,t) = J(x,t) = Cste. (10)
L’équation de Schrédinger s’écrit alors

hZ
— - Op(@) + Vopla) = Fip(a), (11)

La solution de cette équation du second ordre est

o(x) = Ak 4 BemihT (12)
avec
E—Vy)2
Lo— V(B —Vo)2m ' (13)
h
On a immédiatement que
. hk
Pty =" (a2 - |BP) (14)

La partie de 'onde se déplagant vers la droite est pour B =0 et A £ 0.

La fonction 1, (x,t) n’est pas normalisable. Une onde plane n’est pas physique car
elle correspond & un état d’impulsion k déterminé. Donc a un état infiniment étalé
dans 'espace.
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g)

2. Marche de potentiel 4 une dimension.

Si g, (z,t) et g, (z,t) sont solutions de 'équation de Schrodinger par linéarité
Y = Yk, + Yk, est aussi une solution :

Zh@ﬂ/f(% t) = Zﬁ(atwkl (.%', t) —J— 8k2 wkz (%, t))
= Huy, (z,t) + Hipg, (2, 1)

Mais elle n’est pas une fonction propre du Hamiltonien.
Si on utilise la notation du début de 'exercice y, (x,t) = @i, (z) exp(—iE;t/h)

La densité de probabilité p est donnée par

p(l‘,t) - W}kl (‘Tvt) +wk2<mvt)‘2
|¢k1 (:C, t)’2 + ‘ka (fL‘, t)‘Q + 2§Re(¢)k1 ('T7 t)*i/)kQ ($,_t))

= lom () + oy () + 2Re (i1, (2) 01 (2) €77 1) L (16)

La densité de probabilité dépend du temps si 4 # Es. La pulsation du mouvement
est w = (B2 — E1)/h. Le courant de probabilité est également dépendant du temps.
Marche de potentiel a une dimension.

Dans la région I, z < 0, nous avons 'équation de Schrédinger

2mE

021 () =~ 61 (@) (1)
et dans la région I z > 0
brr(z) = (Vo_hfj)%n Yrr(z) (18)

Les solutions sont des exponentielles exp(+Kx) avec

K {zk:zﬂg‘E pour x < 0

. (19)
=Y———— pour x>0

Les relations de continuité de la fonction d’onde, ainsi que de sa dérivée en x = 0
donne

A+B = C+D
ik(A—B) = q(D—-C). (20)
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11. Corrigé du premier devoir & la maison

c)

d)

Il faut prendre D = 0 pour avoir une fonction d’onde normalisable. On trouve
alors

B Az'kﬁLq
ik—q
2ik

cC = A . 21
q— ik (21)

Pour une particule venant de —oo il faut prendre B = 0 et D = 0. Pour 'onde
réfléchie il faut prendre A = 0.

Par définition R = Jincident/Jreflechi comme

hk hk
Jinciden :7142; Jre 602.27327 22
dent =~ |4] flechi = —|B| (22)
on a 9 9
B ik +q
m- |3 =[5 @)

Le courant pour x > 0 est calculé a partir de la solution ¢ (avec toujours D = 0)
h
J][ = Re (q ’C|2 €—2qx> =0 (24)
2im

Comme le courant de probabilité est nul, le facteur de transmission 7" = 0, ce qui
est compatible avec R = 1 trouvé ci-dessus.

La probabilité de présence dans la région = > 0 est donnée par

prr(x,t) = |C’2672qx (25)
o0 C 2
| peotarae =55 0. (26)

donc il y a une probabilité de présence non nulle dans la région x > 0 méme s’il
n’y a pas de particule transmise. La fonction d’onde pénétre dans la marche de
potentiel sur une épaisseur de 'ordre de 1/q.

Comme 'onde est complétement réfléchie on peut considérer le déphasage. Par
définition pour une onde de la forme

B ke (27)

pr(2) = A (" + 2
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3. Demi-tour devant un précipice

le déphasage est donné par

E
Vo — E
(28)

B) _ik+gq

Af := arg < = ,
IR —q

1 A = 2 arctan <k> = 2arctan

q

Si Vy — oo alors ¢ — co. On trouve que B — —A et C' — 0. La fonction d’onde
s’annule dans la région II ¢rr(x) = 0 et dans la région I pr(z) = 2iAsin(kx).

Les conditions de continuités de la fonction d’onde sont toujours satisfaite et ([20))
deviennent alors

A+B = 0 (29)
ik(A—B) = — lim qC = —2ikA. (30)

Vo—o

La dérivée n’est pas continue car si ’on intégre ’équation de Schrodinger de part
et d’autre de la marche on a que

¢7(0) = ¢77(0) = ¢7(0) = —2iAk (31)
ce qui correspond a l'équation (30).
Si E > Vj il suffit alors de poser dans les équation précédentes ¢ = —iq avec

g= VEZ W0, 3

k—q\?
R = [+
<k+é>

- S |0 '0'2 4kg

Alors nous avons

k

I (33)

Jincident (k + 4)2 .
On vérifié aisément que R+ 71 = 1.

On trouve alors les relations standards pour les coefficients de transmission et de
réflexion de 'optique en termes du ratio les longueurs d’ondes ni/no = A\rr/Az.

Demi-tour devant un précipice

Comme la source émets des particules depuis x = +00, leur énergie E est forcé-

ment supérieure Vy. En posant E := h;’ff et B —Vy = % > 0, I’équation de

Schrédinger dans chaque région donne

of(z) +kor(z) = 0 pour x < 0
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11. Corrigé du premier devoir & la maison

90/1/1(37) + KQ(PH(l“) = 0 pour z > 0. (34)

Puisque les particules viennent de x = —+oo alors A = 0 et les solutions sont
données par

er(z) = Be'_““ pour z <0
orr(z) = CeB® 4 Demike pour z > 0. (35)

Les conditions de continuités donnent que C + D = B et iK(C — D) = —ikB, qui
implique que

K-k

Kﬁ—{k
B = ——D. 36
k+ K (36)

Le coefficient de réflexion est donnée par

2
R_‘C’2_<K—k:)2_ VE=Vo - VE 37
D K+k VE-Vo+VE )| =
b) Afin d’étudier le comportement de R nous remarquons que
V2
R= 0 (38)

(VE— Vo + VE)'!

on en déduit aisément que R est une fonction décroissante de ’énergie.

¢) On constate que pour E 2 Vj le coefficient de réflexion se comporte comme R =~

1—-4,/ E‘_/OVO, et que limg_,y;, R = 1. Donc pour les particules d’énergie proche de
Vo sont complétement réfléchies. C’est un comportement purement quantique car
une partie de la fonction d’onde est dans le trou. Les particules classiques tombent

de la marche de potentiel.

4. Etalement du paquet d’onde

Dans cet exercice on revient sur 'interprétation de la relation d’incertitude discutée
en PC2.

a) Dans l'espace des impulsion I’équation de Schrodinger s’écrit

_ 2
z’hwg’t) — Hp)d(p,t) = E@) d(p,t)  BE(p) = 2—, (39)
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4. Etalement du paquet d’onde

donc

b(p,t) = %(p,0) e F . (40)

On suppose que 1/3(1), t) est négligeable hors de p ~ pg. Le développement de Taylor
autour de py donne

E(p) =~ E(po)+ (p = po) (?95) ) +0(p?)
= B o+ 06 (41)

ol pp = mug. La fonctAion d’onde ¥ (x,t) est donné par la transformée de Fourier
de la fonction d’onde v (p,t) (voir PC2)

1 -
bl t) = v /R 3(p.t) dp

o~ et e_iE(f]:)t ¥ (p,0) dp
V2rh Jr
. (pgvg—Eqg)t p(x vot) ~
~ e T o P(p,0)dp
(pouo—Eg)t
. (pgug—
~ e (- vot, 0). (42)
On constate qu’a cet ordre d’approximation
[ (x,t))? =~ |¢(z — vot, 0)]2. (43)

On a donc un paquet d’onde qui se déplace a la vitesse vy sans dispersion (sans se
déformer).

A Pordre deux en p alors

E(p) ~ Ey + (p — po)vo + (p;n];o)Q +0(p°) (44)

On utilise la fonction d’onde gaussienne étudiée en PC2
~ B 1 (p — po)?
¥(0,p) = W exp <_202h2 (45)

On trouve alors apreés transformée de Fourier

1 ~
bt = [ dwitydp
’ vV2rh Jr ’
- zpg—Eqt 1 - (p—p)(z—vgt) (P Po) '
~ ¢ h /7 ‘ h QIZ)(p, )
N 1 i 5270 ont (p_pO)I%Z_UOt) (p :L%) to— (z;agg% dp

(ro? hQ)% \/7
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11. Corrigé du premier devoir & la maison

2

(p—vt)? >
IR TR (46)
T4 )1 4 jo2h
m
On en déduit que
2 o —(e—w0t)? o
|h(z, t)]* ~ e m2+12n207 (47)

V1 4+ CEE

En utilisant les résultats de la PC2 sur les paquets d’onde gaussiens, on en déduit

I’écart type
[1 R2202 Apot\ 2

avec Axg = ﬁ et Apyg = ho/ V2 les écarts types du paquet d’onde gaussien

libre. 11 y a donc étalement du paquet d’ondes libres. Le termes en Apgy/mt sug-
gére 'image classique d’un ensemble de projectiles groupés initialement dans une
bande Axg autour de xg, les vitesses de ces projectiles étant réparties dans une
bande Av = Apg/m autour de la vitesse de groupe du paquet vg = po/m. Du
fait de la dispersion en vitesse, des projectiles, se trouvant initialement au méme
point, se trouvent uniformément répartis dans une bande Avt au bout du temps
t. A T'instant initial, les particules sont réparties uniformément dans une boite de
dimensions Az et Ap et centrée en (zg,pg). L'impulsion moyenne py du paquet
d’onde et sa dispersion en impulsion Apy ne varient pas au cours du temps car
I'impulsion est une constante du mouvement pour la particule libre.
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12. Corrigé du second devoir a la
maison

Mécanique quantique (PHY 311)
Pierre Vanhove

1. Effet tunnel résonnant et contréle de la transmission
d’un électron a travers une barriére

_(qV —A
H(—A —qV)

b) Clairement det H = —(qV')? — A? donc

=V (G5 “eon)

sin

c¢) Les énergies sont By = ++/(qV)2 + A? et les vecteur propres associés sont |—) =
(—sinf, cosf) = —sinb|g) + cosb|d) pour E_, et |+) = (cosf,sinf) = cosf|g) +
sin 0|d) pour E.

d) On a des courbes en \/(¢V)? + A2

Energie
10+

_10‘ P s .

~10|

e) On débute avec un électron dans le puits de gauche |¢(0)) = |g), soit en termes
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12. Corrigé du second devoir & la maison

d’états propres d’énergie [¢(0)) = cosf|+) —sinf|—). Aprés un temps t I'état est
[4(t)) = cos B~ F+t/| 1) —sin e~ F-t/"| ). Comme |d) = sin O|+) +cos O] —) alors

Pyt) = [dlp() = (Sm(%’) sin (W))Q

o N/ CTALET AN X
T @Az h ‘ @)

f) La probabilité maximale est A?/((¢V)? + A2) cette probabilité vaut 1 lorsque
V =0 et s’annule pour V' — co. On peut donc empécher les électrons de traverser
la barriére avec une tension.

g) Pour V = 0 nous avons

pour ¢V > A nous avons

2 2
Py(t) = (ﬁ/)? <sin |q‘h/|t> <1. (3)

h) On voit donc que lorsque la tension est faible la probabilité de passage est maximale
pour un temps t = hn/2A avec la période hr/A. Lorsque 'électron est passé dans
le puits de droite, avec une tension forte on supprime tout passage de nouvel
électron.

2. Etats cohérents de l'oscillateur harmonique

a) On a

ala) =e” 5 Z a‘¢n (4)
avec alpn) = /n|pn_1) et alpp) = 0 on a donc

a‘(bn 1 O“O‘>' (5>

_72 n_

Par conjugaison hermitique nous avons bien sur que (a|a))’ = (alaf = o*(al.

b) L’état étant décomposé sur les états propres de H, on a

) = T ey,

n>0
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2. Etats cohérents de I'oscillateur harmonique

Qt \al

— —2Qt
= Z \F )" #n)

= ]oz exp(—th)) . (6)

On vérifie bien que cet état est normé car

(V@) |h(t)) = (aexp(—iQt)|aexp(—it)) (7)

et pour tout o on a que

(afa) = el 3= @7 1y . ®)

n!m!
n>0
m>0

Dans la PC5 il est démontré que les états |¢y,) sont orthonormés (¢ |dn) = 0mn

donc “2
—al? af*"
n>0

On caleule (W(D)|2[6(1)) = /3 (O]l () + ((8)]al[¥(1))). Des questions

précedentes on nous savons que a|aexp(—iQt)) = aexp(—ifdt) |aexp(—idt)) et
(avexp(—iQt)|aT = a* exp(iQt) (o exp(—iQt)|, donc

AR =\ 5oy (e ™ WORD) + o e @@I0E)  (10)

Comme (3(t)|¢(t)) = 1 on trouve que

W RI0) =\ g (e +a ™) ()

Ce qui correspond a un mouvement d’oscillation de fréquence 2. En remarquant

que
POlEl(1) _ :
= 02 (0 (D) (12)

on retrouve I’équation du mouvement d’un oscillateur classique.

d) Pour le calcul de lécart type (Aa?)2 = ()22 (t)) — (((t)]|2]1(¢)))? on évalue

WORB0) = o (WOa0) + (eolE e
b ol + dale ») (13)
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12. Corrigé du second devoir & la maison

nous avons

WO)a®lp(t)) = a’e (14)
WOI@2() = (o)™ (15)
Wnlatal(t) = laf. (16)

Pour la derniére contribution nous utilisons la relation de commutation donnée en
PC5 [a,a!] =1

(w(t)aa (1) = WO)(1+afa)[p()) = 1+ [al. (17)

Donc
()22 (1) = % (0™ +a™e™™)? 1) (18)

Donc
(Az)? = mLQ (19)

C’est le méme écart type que celui de 'état fondamental |¢pg) de l'oscillator har-
monique.

e paquet d’onde oscille sans se déformer en conservant la forme d’une gaussienne
C t d’ond 11 déf t la f d’ ,
et en suivant le mouvement classique. Si |a] est trés grand, la largeur du paquet
d’onde devient négligeable par rapport a ’excursion du mouvement, et le com-
portement de l'oscillateur est indiscernable du comportement classique. Pour «
général nous avons un état « quasi » classique qui se comporte comme un état
classique.

Nous résumons la différence entre les états propres de ’Hamiltonien |¢,,) et les états

cohérents

Etat propre |¢,) Etat cohérent |a)
stationaire aft) = ag ™
(E) = (n+3) hQ (E) = (lof? + 3) hQ2
AFE =0 AFE = hQa
() =0 (@) = |/ oy Re(a(t)
(p) =0 (P) = \/ gz Sm(a())
. AzAp=(n+1)h AwAp:%
bn(x) € /2 sont les polynémes d’Hermites | ¢o(x) sont des gaussiennes

110



Troisieme partie .

Compléments : exercices non
donnés, etc.
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1. Compléments

Exercices non donnés.

1. Conséquences de la relation d’'incertitude de
Heisenberg

Pour un objet de masse m, le principe d’incertitude AzAp > g implique AzAv >

% ou Ax est la largeur de 'onde, et Av sa dispersion en vitesse. Si a 'instant ¢ = 0,
I’onde est localisée, alors Ax est faible et Av est donc grand. Ce qui implique que

I'onde se disperse et ne reste pas localisée.

a) Pour un électron, i/m ~ 10cm?/s donc si a t = 0 on a Az < 1em, alors Av >
h/(2mAz) > 0.5cm/s donc Ax dépasse 1 ¢cm aprés t = 2 s.

0—18

b) Au contraire pour une poussiére, i/m > 1 m? /s, on peut avoir Az ~ 1079 m

et Av ~ 1079 m/s tous deux trés petits.

2. Le puits carré infini

donné en PC 4 en 2013
Les développements récents de la technologie des semi-conducteurs permettent de
réaliser des superpositions alternées de couches d’arséniure de gallium et d’aluminium
(Al;Ga;_,As), dont les épaisseurs et la composition (valeur de ) sont contrdlées a
quelques couches atomiques prés. L’énergie potentielle d’un électron se déplagant per-
pendiculairement a ces couches dépend de la valeur de x, ce qui permet de réaliser
“a la carte” des puits et des barriéres de potentiels & une dimension V(x). La phy-
sique d’un électron se déplacant dans ces structures est bien décrite par 1’équation
de Schrédinger & une dimension. Cependant, & cause de l'interaction avec le réseau
cristallin, le coefficient d’inertie m de I’électron, appelé “masse effective”, est beaucoup
plus faible que la masse m, de I’électron dans le vide : on a en effet m = 0,067 m, .
On réalise une couche de GaAs, d’épaisseur a, prise en sandwich entre deux barriéres
épaisses de AlAs. L’énergie potentielle de ’électron dans AlAs étant trés élevée, on
considérera que le mouvement de I’électron est celui d’une particule de masse m dans
le potentiel :
V(z) =00 siz<Oousiz>a (1)
V(z)=0 si0o<z<a.

> Niveaux d’énergie du systéme.

113



1. Compléments

a) Montrer que les énergies propres sont quantifiées sous la forme E,, = n?E; ou n
est un entier strictement positif. Calculer E; et déterminer les fonctions propres
Xn(x) correspondant & E,.

b) Comment la symétrie des y,(x) par rapport a a/2 est-elle reliée a la parité de n?
> Evolution d’un paquet d’ondes et émission de rayonnement.

c¢) On suppose que le systéme est placé initialement dans Détat ¢(x,0) =
[x1(x) + x2(z)] /v/2. Calculer 9 (z,t) & un instant t ultérieur.

d) Calculer 'évolution du “centre” du paquet d’onde (x — a/2) (t) et commenter.
a
9 2
On donne / (a: — 2) sin (E> sin ([ Z22) dz = _Si.
2 a a 972
0

e) Au mouvement d’une charge le long de Ox est associé un dipole électrique D = gz,
qui est susceptible de rayonner une onde électromagnétique a sa fréquence d’os-
cillation. Calculer la longueur d’onde du rayonnement émis (“transition” électro-
magnétique entre les niveaux Fp et Fs) pour une largeur du “puits quantique”
a = 15 nm. Les puits quantiques sont en principe utilisés comme détecteurs de
rayonnement infrarouge.

On pourra se servir des relations utiles : he = 197,3 eV.nm et mec? = 0,511 MeV.

3. Effet tunnel avec double puits

Vo

0 a a—+b Qa—l—b;;

Remarque : Cet exercice demande des calculs assez important. Il peut étre considéré
comme optionnel.

Le but de cet exercice est de relié entre eux différents problemes de puits de po-
tentiels, et de montrer que [’effet tunnel permet de lever la dégénérescence entre des
nweaur quantique. Un effet qui sera revu en détails en PC7. On considére le potentiel
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3. Effet tunnel avec double puits

V(z) donné par un double puits tel que

+oo  x €] — 00,0[U[2a + b, +00]
V(z) =40 zel0,a]Ula+b2a+b . (2)
Vo x€la,a+?]

On considére une particule de masse m et d’énergie E faible devant la valeur du
potentiel E < Vp. On supposera que 2mVyb?/h? > 1.

a) Montrer que la fonction d’onde prend la forme suivante

Yr(x) = Asin(kz) 0<z<a

Yrr(x) = Bre® + Bye ¥ a<zr<a+b (3)
Yrrr(x) = Csin(k(2a+b— 1)) a+b<x<22a+b.
avec
omE 2m(Vo — B)
k= = 4
T - (4)

b) Ecrire les conditions de continuité de la fonction d’onde et de sa dérivée. En déduire
I’équation suivant

(qtan(ka) + k) e?® = + (gtan(ka) — k) . (5)

¢) Dans lapproximation E < Vp, montrer qu’a l'ordre le plus bas en Iénergie de la
particule E, I'état de plus bas niveau d’énergie a pour énergie et moment

12 k2
ko=_2,  EO=2T0 5>, (6)
a 2m

d) A quelle systéme simple correspond cette solution ?

e) En utilisant déterminer 1’énergie et le moment des niveaux suivants en le dé-
veloppement en k.

f) On considére la limite b — oo. Montrer que les premiers niveaux d’énergie sont
données par

(0) _ (0)

2F, 2m(Vo — Ey )

EMN = EY — s Q= . : (7)
aqo

g) A quel type de potentiel correspondent ces solutions ? Quelle est la dégénérescence
des niveaux d’énergie ?

h) On revient maintenant aux cas ou b est de valeur finie. Un effet tunnel entre la
partie gauche et droite du potentiel sera possible et entrainera une levée de la
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1. Compléments

dégénérescence. Montrer que pour b fini les niveaux d’énergie deviennent

(0)
E; = E,gl)—4—E" e~ 0P
110)
E
Ef = BEWY 447" ¢ wb,
" nt qoa ‘

i) Déterminer les fonctions d’ondes associées a ces niveaux d’énergie.

4. Application a une barriére infiniment haute et mince.

a) Comme a — 0 et Vj — oo avec aVpy = C constant, en intégrant I'équation de

Schrédinger
h2

- (@) = (B = Vo)o(w)

entre 0 et ¢ on a

h?

2m

La limite a — 0 donne

— 5= (¢'(07) = ¢'(07)) = =C »(0).

(9)

a 1
(¢(a) - (0)) = /0 (B - Vo)p(a)dz = /0 (aE — aVi) play) dz. (10)

(11)

b) Dans chacune des région nous avons (pour une onde plane incidente de la gauche)

or(x) = Ae*® 4 Be x <0
or(z) = Feik® x>0.

Les conditions de raccordement en z = 0 donnent

A+B = F
h2
Dont on déduit
B = A z"
ihk
A
F = mc
me _
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4. Application 4 une barriére infiniment haute et mince.

Donc
1

= m2C2 °
1+ h2k2

T (18)

On constate que ¢ = \/2m (Vo — E)/h = /2mVjy//hbar est tel que ga — 0 lorsque
a — 0. En prenant la limite dans I’expression pour 7' on retrouve le méme résultat
pour le coefficient de transmission.

Evaluer les coefficients de réflexion et de transmission de la barriére dans cette
limite et étudier leurs variations en fonction de ’énergie E (en particulier les
limites de basse et haute énergie).

Est-ce que I'énergie peut étre négative dans cette limite ?
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2. Relation d’'incertitude et gravitation
quantique

L’unification de la mécanique et de la relativité générale est un probléme ouvert,
mais certaines questions peuvent étre abordées par des raisonnements semiqualitatifs,
utilisant surtout des arguments d’analyse dimensionnelle. Le but de cet exercice est
d’étudier ainsi une extension possible des inégalités de Heisenberg, prenant en compte
des effets de gravitation quantique.

a) En utilisant la constante de Planck f, la constante de Newton Gy et la vitesse de
la lumiére, montrer que ’on peut construire une longueur (la longueur de Planck
Lp), un temps (le temps de Planck Tp), une masse (la masse de Planck Mp) et
une énergie (I'énergie de Planck Ep). On pourra remaquer que Ep = Mpc? et
TpEp = h.

b) Calculez les valeurs numeériques de Lp, Mp, Ep et Tp.
On rappelle que

c = 299792458 m/s,
ho~ 1.054571726 x 1073 kgm?/s
Gy =~ 6.67384 x 107 m3/(kgs?). (1)

En 1923 Heisenberg justifia sa relation d’incertitude en considérant une mesure
de position de I’électron par un « microscope », éclairé par des photons de longueur
d’onde \. A cause de la diffraction, la position de I'électron ne peut pas étre connue
avec une précision meilleure que A\, donc Axzgy > A. Par ailleurs, pour obtenir une
image, la direction du vecteur d’onde k du photon ne peut pas étre bien définie, donc
’électron va subir un recul aléatoire de 'ordre Apy ~ h/\. En faisant le produit de
ces deux quantités on a bien Azy Apy > k.

On considére maintenant I'incertitude supplémentaire induite par une interaction
gravitationnelle entre le photon et I’électron. On admettra pour cela qu'un photon
d’énergie Ep;, posséde une masse effective (gravitationnelle) Ep,/c?.

a) Calculer I'accélération subie par l'électron soumis a lattraction gravitationnelle
d’un photon d’énergie E,;,. On traitera cette interaction comme si le photon était
a une distance fixe L de 1’électron, et agissait pendant un temps L/c.

b) En déduire la distance Azg parcourue par I’électron durant l'interaction. Et véri-
fier que L n’apparait plus dans le résultat.

119



2.

c)

0.

Relation d’incertitude et gravitation quantique

En utilisant la relation entre I'impulsion du photon et son énergie E,;, = pppc,
et en supposant que I'impulsion du photon est transférée a 1’électron comme dans
le calcul d’Heisenberg, écrire une relation entre Axg et Ap faisant intervenir la
longueur de Planck Lp.

On suppose que la dispersion totale Az peut s’écrire Az = Azy + v?Azxg ol v
est une constante sans dimension dépendant de la théorie particuliére considérée.
Montrez que la relation d’incertitude généralisée pour 1’électron est donnée par

ho Ly
Az > -
N

Ap. (2)

Montrer que cette relation a un minimum en fonction de Ap, qui correspond &
Ax >2vLp. (3)

Pouvez-vous Interpréter cette relation 7 On pourra distinguer les situations usuelles
(Ap < h/Lp) et celles a trés haute énergie (Ap ~ h/Lp).

Comment se situent les « hautes énergies » (E ~ Ep) par rapport a celles atteintes
dans la LHC (14 TeV = 1410'2¢eV) ?

1. Contexte physique

Dés 1916 Albert Einstein argumenta de la nécessité de quantifier le champs gravi-

tationnel au méme titre que 'on doit quantifier le champs électromagnétique

Gleichwohl miifiten die Atome zufolge der inneratomischen Elektronenbe-
wegung nicht nur elektromagnetische, sondern auch Gravitationsenergie
ausstrahlen, wenn auch in winzigem Betrage. Da dies in Wahrheit in der
Natur nicht zutreffen diirfte, so scheint es, dafs die Quantentheorie nicht
nur die Maxwellsche Elektrodynamik, sondern auch die neue Gravitations-
theorie wird modifizieren miissen

Les arguments de cet exercice sont essentiellement dimensionnels, néanmoins la

nécessité d’étendre la relation d’Heisenberg & haute énergie (pour les grandes valeurs
de Ap) est une propriété de la théorie des corde et d’autre théorie de gravité quantique.
La constante v dépend du schéma de quantification de la théorie. Cette relation
d’incertitude étendue est particuliérement importante pour la compréhension de la
physique de I’évaporation (quantique) des trous noirs.

Reéférences :

1. A. Einstein, “Approximative Integration of the Field Equations of Gravitation,”
Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys. ) 1916 (1916) 688.

2. D. Amati, M. Ciafaloni and G. Veneziano, “Classical and Quantum Gravity
Effects from Planckian Energy Superstring Collisions,” Int. J. Mod. Phys. A 3
(1988) 1615.
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1. Corrigé

3. D. Amati, M. Ciafaloni and G. Veneziano, “Can Space-Time Be Probed Below
the String Size 7,” Phys. Lett. B 216 (1989) 41.

4. D. J. Gross and P. F. Mende, “String Theory Beyond the Planck Scale,” Nucl.
Phys. B 303 (1988) 407.

5. E. Witten, Phys. Today, Apr. 24 (1996) -
http://www.sns.ias.edu/ witten/papers/Reflections.pdf.

6. S. Hossenfelder, “Minimal Length Scale Scenarios for Quantum Gravity,” Living
Rev. Rel. 16 (2013) 2 |arXiv :1203.6191 [gr-qc]].

1. Corrigé

a) L’analyse dimensionnelle donne

hG hG
Ly — N 1610Fem,  Tp =/ =~ 05410 %5
C C
h he?
MP = 76 ~ 929 1078 kg7 EP = \/T ~ 1.2 1019 GeV . (4)
GN GN

b) On vérifie aisément les relations Ep = Mp c?, TpEp = h ainsi que Lp = T, c.

a) L’accélération de ’électron sous lattraction gravitationnelle d’un photon d’énergie
E, est
Gy E, |

b) Dans la boite de longueur L l'interaction dure un temps de 'ordre L/c¢ donc

C

Gy By (L\° _GnE, _Gnp _ Lpp ©)
ct c3 h

On remarquera que la taille caractéristique de la boite n’apparait plus dans cette
relation.

¢) On consideére la relation d’incertitude étendue sur Az

B L2
Az > —— + 7222 Ay 7
:c_Aer’y o Ap (7)

Le membre de droite est une fonction de Ap ayant une valeur minimale pour
Ap, = h/(yLp). Ainsi nous trouvons que

Ax >2vLp. (8)

121



2. Relation d’incertitude et gravitation quantique

d)
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La relation d’incertitude (7)) indique que pour des énergies faibles Ap > h/Lp
devant I'impulsion de Planck, les lois de la mécanique non-relativistes dominent.
A trés haute énergie la relation d’Heisenberg impliquerait une absence de relation
d’incertitude entre Ax et Ap ce qui n’est pas possible avec 'image des créations
de trous noirs prédit par la relativité générale. La relation d’incertitude étendue
implique qu’a trés haute énergie on ne peut pas résoudre des distances inférieures
la longueur de Planck, qui fournit la taille minimale des « grains d’espace-temps ».
La valeur de v dépend du schéma de quantification de la gravitation. Cette valeur
peut-étre déduite de calculs d’amplitudes a haute énergie en théorie des cordes.

Les énergies sont supérieures de 15 ordres de grandeurs a celles obtenues dans le
LHC.



3. Filtres a spins et Corrélations

1. Filtres
Bl EREE (v [ 5 ][ V] (N[5 ][]
b— — o —<
EERNER (s | [~ ][] (s | [~ ][5 ]

(a) (b) ()

FIGURE 1. — Chemins suivis par un faisceau d’électron (a) polarisé | 1), (b) polarisé
| 1) et (c) non polarisé.

On considére un ensemble de trois aimants avec une orientation alternée. Un élec-
tron avec un spin | 1) suit le chemin vers le haut cf. fig. [I[a), avec un spin | |) le
chemin vers le bas cf. fig. [I|b). Dans un faisceau d’électron non polarisé la moitié¢ des
électrons suivront le chemin haut et la moitié le chemin bas cf. fig. (c)

On place un block de plomb sur le chemin bas bloquant tous les électrons avec un
spin | |), et seuls les électrons avec un spin | 1) émergent du dispositif. On symbolise
ce dispositif par un bloc avec une fleche verticale

Ot =

De maniére plus générale I'orientation du spin sélectionné est indiqué par ’angle
d’inclinaison du dispositif.

Pour chacune des configuration suivantes donner la fraction des particules émer-
gentes par rapport au total des particules incidentes

a) Pour une source polarisée a 50% | 1) et 50% | ), on place un
filtre orienté d’un angle 6 par rapport & la verticale. Quelle est
le pourcentage des électrons traversant le filtre en fonction de 6

Lt =
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3. Filtres a spins et Corrélations

b) deux filtres orientés a 0 degré @; T F 1 e

c¢) un filtre a 0 degré et 90 degrés d). T S

d) un filtre a 0 degrés et a 180 degrés (Du T - ¢ -

e) un filtre a0, 90 et 180 degrés (1)—— T _—— ‘ —

1.1. Corrélations

On s’intéresse maintenant aux corrélations avec une source radioactive qui émet
une pair d’électrons non polarisée : par exemple un électron avec un spin | 1) est
émis vers la gauche et électron avec un spin | |) est émis vers la droite. On aussi un
I’émission avec le spin | |) vers la droite et le spin | 1) vers la gauche.

Qu’observe-t-on dans les configurations suivantes avec des filtres orientés 1'un
orienté a 0 degrés

£) lesecond & 0 degré
g) lesecond & 180 degrés
h) le second & 90 degrés ®

i) le second & 45 degrés e

2. Corrigé

' REDIGER L EXPLICATION!!!
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2. Corrigé

2.1. Filtres

Si la source émet un faisceaux d’électron non polarisé, le premier filtre sélectionne
50% des électron | 1) le taux d’électron transmis est

a) Pour une source polarisée a 50% | 1) et 50% | ), on place un filtre orienté d’un
angle @ par rapport a la verticale. Quelle est le pourcentage des électrons traversant
le filtre en fonction de 6 : P = 100 cos® g.

b) deux filtres orientés & 0 degré : second filtre sélectionne 100% des électron sortant
du premier filtre. Donc a la sortie nous avons 50% des électrons émis par la source.

c¢) un filtre a 0 degré et 90 degrés : le second détecteur sélectionne 50% des électrons
sortant du premier filtre donc a la sortie nous avons 25% des électrons émis par la
source.

d) un filtre a 0 degrés et & 180 degrés : le second filtre bloque tous les électrons donc
a la sortie nous avons 0% des électrons émis par la source.

e) un filtre & 0, 90 et 180 degrés : Nous avons donc a chaque fois 50% des électrons
sélectionnés pour un résultat de 12.5% des électrons émis par la source.

2.2. Corrélations

Comme la source émet des paires d’électron avec un spin | 1)gauche ® | I)droite OU
bien | |)gauche ® | T)droite de sorte a ce que le spin total soit nul.
Apreés les filtres on détecte donc

f) deux filtres orientés a 0 degré : soit un électron a gauche et rien a droite pour une
paire | 1) gauche ® | ) droite, S0it un électron a droite et rien a gauche pour une paire

‘ \L>gauche ® ‘ T>drojte.

g) un filtre & 0 degré et 180 degrés : soit un électron a gauche et a droite pour
une paire | T)droite ® | 1)gauche, s0it rien ni & gauche, ni & droite pour une paire
‘ \l/>droite @ ’ T>gauche~

h) un filtre & 0 degrés et a 90 degrés : la moitié des électron émergent du filtre a
droite, et la moitié des électrons émergent du filtre & gauche. Lorsqu’un électron
passe par le filtre gauche (orienté a 90 degrés), seulement la moitié du temps un
électron émerge du filtre droit.

i) un filtre & 0 degrés et a 45 degrés : on a la méme réponse qu’au point précédant.
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4. Etats cohérents de I'oscillateur
harmonique

Le but de ce devoir est de décrire dans une premiére partie des états particuliers
(états “cohérents” ou “quasi-classiques”) de 'oscillateur harmonique, qui représentent
la meilleure “approximation classique” du mouvement de [’oscillateur. La seconde par-
tie du sujet décrit l'utilisation de ces états pour fabriquer une superposition quantique
d’états du type “chaton de Schrodinger”[cf les derniers transparents de l’amphi 3 le 7
mai dernier]/.

a) On considére comme en PC 5 un oscillateur harmonique décrit par un hamiltonien
H = p?/2m + ki?/2. On pose w = /k/m. On utilise les observables réduites
X = Zy/mw/h et P = p/vVmwh, ainsi que les opérateurs a, a* et N définis par
i = (X +iP)/v2, at = (X —iP)/V/2, et N = aTa. Dans toute la suite, on
travaillera avec les opérateurs réduits X et P, et on utilisera les coordonnées
réduites X et P en position et en impulsion.

b) On note |n) les états propres de H, de valeur propre (n + 1/2)hw. Calculer (X),
(P), AX? et AP? puis le produit AXAP dans un état |n). Peut-on considérer
que (X) et (P) évalués dans un état propre de H ont un comportement classique ?

¢) On considére un état propre noté |«) de I'opérateur d’annihilation : a|a) = ala),
oll « est un nombre complexe arbitraire, et on décompose cet état sur la base des
états n) @ |a) =D, cn(a)|n).

i) Démontrer par récurrence que c,(a) = exp(—|al?/2)a"/vn!. On utilisera
les résultats de la PC 5 sur les propriétés de a|n), ainsi que le fait que la
loi de probabilité (normée) P(n) = e #u™/n! soit une loi de Poisson de

paramétre u, dont la valeur moyenne et la variance sont toutes deux égales a .

ii) Quelle est la probabilité pour qu'une mesure de 'observable N donne le
résultat n si le systéme est dans I'état |«) 7 En déduire (N) et AN. Montrer
que AN/(N) < 1,si (N) est grand.

d) On considére maintenant 1'état |ae’®).
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4. Etats cohérents de I'oscillateur harmonique

i) Montrer que |ae'?) # e¥?|a). Quelles sont les composantes de |ae’®) sur la
base des états |n) ?

ii) Démontrer que si |[¢(t = 0)) = [a), alors [¢(t) = e"t2)a(t)), o |a(t)) est
obtenu en changeant |a) en |a(t)) = |ae™™?).

iii) Montrer que dans 'état [1(t)), on a «(t) = <X>/\@+Z(P>/\/§A En supposant
maintenant a = ip/v/2 pour t = 0 (oi p est réel), calculer (X)(t) et (P)(t)
dans l'état |¢(t)), et montrer que I'on retrouve le mouvement classique de
Poscillateur pour (X); et (P);.

e) On suppose que l'oscillateur est dans I'état [i(t)).

i) Calculer AX; et AP, (on vérifiera en particulier que ces quantités sont
indépendantes du temps). Que vaut le produit AXAP? Que peut-on en
déduire sur les fonctions d’onde en X ou en P?

ii) En utilisant I'équation a|a(t)) = a(t)|a(t)), montrer que la fonction d’onde
P(X,t) de létat |a(t)) est donnée, a un facteur de phase global (on ne recal-
culera pas le facteur de normalisation), par :

B 2
LQ Ag>t> +iX(P),

W(X,1) = 2rAXY T exp [— (

On peut montrer, de méme, que la « fonction d’onde en P » de 'état |«(t)) est
donnée par :

B(P,t) = [20AP2* exp |- <P_<P>t)2 +iP(X)

2AP

f) Décrire qualitativement le mouvement de l'oscillateur en le comparant au mouve-
ment classique. Que se passe-t-il en particulier si || devient trés grand ?

1. Chaton de Schrédinger (“Schrodinger’s kitten”)

On consideére I'état |x(t = 0)) = co(|a) +|— ) avec a = ip ot p est un nombre réel
grand devant un, et ol ¢y est une constante de normalisation que I’on ne calculera pas.

a) Calculer les fonctions d’ondes x(X,t) et x(P,t) associées a I'état |x(¢)).
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b)

d)

2. corrigé Etats cohérents de I'oscillateur harmonique

En déduire les densités de probabilité II(X,t) et II(P,t) pour wt = m/2. On
mesure la position de loscillateur a l'instant t = 7/2w. Quelles valeurs peut-on
trouver, et avec quelles probabilités ?

D’apreés le formalisme de la mécanique quantique, le pendule est alors “des deux
cotés a la fois”, ce qui est une situation de superposition quantique d’états
macroscopiquement distincts, analogue au probléme du “chat de Schrédinger”.
Montrer que le caractére quantique de cette superposition apparait sur la densité
de probabilité f[(P,t = 7/2w), que 'on pourra comparer & celle que 1'on aurait
pour les états |a) et —|a) considérés séparément.

corrigé Etats cohérents de I'oscillateur harmonique

H = QN +3), donc H|n) = (n+3) hQ|n) ot n est un entier positif ou nul. On a
(n|H|n) = (n|P|n) = 0 donc ces valeurs moyennes sont nulles a tout instant alors
que ’énergie est arbitrairement élevée. Ceci ne correspond pas & un état classique
« raisonnable ».

On obtient ala) =, cp(a)aln) Aot ), ch_i(a)|n—1) =3 cp(a) /n|n—1)
donc ¢p(a) = acp_1(a)/\/n=--- = a™co(a)/v/n!. En écrivant que |a) est normé
on al=le(a)]? 32, [a*/n! = |eo(@)]? exp(|a]?). Donc co(a) = exp(—|al?/2)
a un facteur de phase arbitraire prés. P(n) = |c,(a)|? = exp(—|a|?)|a|**/n!. Loi
de Poisson de paramétre |a|? donc (N) = (AN)? = |a|?. Et AN/(N) = |a|™! =
1/y/(N) > 1si (N) est grand.

L’état  étant  décomposé sur les états propres de H, on a
|4(2)) = exp(—lal?/2) 32, a™/vnl exp(=iQt(n  + 1/2))n) =
exp(—iQt/2) exp(—|a|?/2) 3, (aexp(—iQt))"|n) = exp(—iQt/2)|a exp(—iQt)).

(X)(t) = p sin(Q¢t), (P)(t) = p cos(Qt). D’apres les expressions de X et P en fonc-
tion des @ et af (cf. PC5), alors (AX)2 = (AP)? = 1/2 ou en unités dimensionnées
AX AP = h/2. Le paquet d’onde est donc gaussien comme démontré en PC2. Ex-
plicitement nous avons (X + iP)|a) = v2a|a) and (X — v2a)p(X) = fdlflgf),
Y(z) = Oste exp(—(X — v2a)?/2) = Cste exp(—(X — (X) — i(P))?/2) =
Cste exp(iq) exp(—(X — (X))?/(4AX?) + iX(P)). Avec les dimensions 9(x) =
(~27rAX2)_1/4 exp(—(z — (x))%/(2Ax)% + iz(p)/h). En représentation |p) on a
b(p) = (2mAp®) " exp(—(p — (p)?/(24p)* —ip(x) /).

Chacun des deux paquets d’ondes oscille sans se déformer en suivant le mouvement
classique. Si |a est trés grand, la largeur du paquet d’onde devient négligeable
par rapport a 'excursion du mouvement, et le comportement de 'oscillateur est
indiscernable du comportement classique.
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4. Etats cohérents de I'oscillateur harmonique

3.

a)

130

corrigé Chaton de Schrédinger (« Schrédinger’s
kitten »)

Il est plus commode de faire les calculs ci-dessous avec les positions et im-
pulsions X et P sans dimensions. (X) = (2rAX2)"1/4271/2 (exp(—(X —
psin(Qt))2/2 + iXpcos(Qt)) + exp(—(X + psin(Qt))?/2 — iXpcos(Qt))) et
Y(P) = (2rAP%)~1/421/2 (exp(—(P — psin(Qt))?/2 — iPpcos(Qt)) + exp(—(P +
psin(Qt))2/2 + iPpcos(Qt))) On en déduit pour Qt = 7/2 P(X) =
(4m) V2| exp(—(X — p)2/2) + exp(—(X + p)?/2)|?. Deux gaussiennes centrées en
+p. TI(p) = (47)~1/? exp(—P?/2)|2 cos(Pp)|?. La modulation de la distribution en
P est la signature de la superposition quantique. Elle n’existe pas pour les états
pris séparément, et disparait extrémement vite (d’autant plus vite que p est grand)
en présence de dissipation.
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