
Mécanique Quantique
École Polytechnique - PHY 311 - PC 2015

Werner Heisenberg et Niels Bohr

©2013-2015 Pierre Vanhove - http://sites.google.com/site/vanhovepierre/

1

http://sites.google.com/site/vanhovepierre/




Table des matières

I. Enoncés des petites classes et des devoirs à la maison 1

1. PC1 : Interférences et probabilités 3
1.1. Interférences, relation d’incertitude, ondes de matière . . . . . . . . . . 3

1.1.1. Nature ondulatoire des photons . . . . . . . . . . . . . . . . . . 3
1.1.2. Ondes de matière . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2. Loi de désintégration exponentielle . . . . . . . . . . . . . . . . . . . . 5
1.3. Interféromètrie et physique fondamentale . . . . . . . . . . . . . . . . . 6

2. PC2 : Transformée de Fourier et relation d’incertitude 9
2.1. Propriétés générales de la transformation de Fourier . . . . . . . . . . 9
2.2. Transformation de Fourier et inégalités de Heisenberg . . . . . . . . . . 10
2.3. Évolution du paquet d’onde libre . . . . . . . . . . . . . . . . . . . . . 10
2.4. Relations d’incertitude et physique fondamentale . . . . . . . . . . . . 11

3. PC3 : Barrière de potentiels et effet tunnel 13
3.1. L’effet tunnel dans la vie quotidienne . . . . . . . . . . . . . . . . . . . 13
3.2. Conditions de raccordement à l’interface d’un potentiel discontinu. . . 14
3.3. Barrière de potentiel à une dimension - Effet tunnel. . . . . . . . . . . 15
3.4. Application à la marche de potentiel à une dimension. . . . . . . . . . 17
3.5. Résonance de diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4. PC4 : Mouvement de particules quantiques à une dimensions : états liés 19
4.1. Évolution temporelle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2. Invariance par parité . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3. Etats isotropes de l’atome d’hydrogène . . . . . . . . . . . . . . . . . . 20

5. PC5 : L’oscillateur harmonique 23
5.1. Notations de Dirac et relations de commutation dans l’espace des états 23
5.2. L’oscillateur harmonique . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6. PC6 : Expérience de Stern et Gerlach 27
6.1. Théorème d’Ehrenfest . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.2. Moment magnétique . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.2.1. Description classique : précession de Larmor . . . . . . . . . . . 27
6.2.2. Description quantique . . . . . . . . . . . . . . . . . . . . . . . 28

3



Table des matières

7. PC7 : Dynamique d’un système à deux niveaux 29
7.1. Oscillation de Rabi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

8. PC8 : Cryptographie quantique 31
8.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
8.2. États de spin 1

2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
8.3. État intriqué de deux spins . . . . . . . . . . . . . . . . . . . . . . . . 32
8.4. Contexte physique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8.5. Protocole de codage de messages confidentiels . . . . . . . . . . . . . . 34
8.6. Le théorème de non-clonage quantique . . . . . . . . . . . . . . . . . . 36

9. PC9 : Molécule de Benzène 37
9.1. Un modèle simple pour la molécule de benzène . . . . . . . . . . . . . 37
9.2. La molécule de cyclooctatétraène . . . . . . . . . . . . . . . . . . . . . 38

10.Devoir Maison 0 : transformée de Fourier et relation d’incertitude 41
10.1. Particule libre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
10.2. Oscillateur harmonique . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

11.Premier devoir à la maison 43
1. Courant de probabilité . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2. Marche de potentiel à une dimension. . . . . . . . . . . . . . . . . . . . 44
3. Demi-tour devant un précipice . . . . . . . . . . . . . . . . . . . . . . . 46
4. Étalement du paquet d’onde . . . . . . . . . . . . . . . . . . . . . . . . 46

12.Second devoir à la maison 49
1. Effet tunnel résonnant et contrôle de la transmission d’un électron à

travers une barrière . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2. États quasi-classique d’un oscillateur harmonique . . . . . . . . . . . . 50

II. Corrigés des petites classes et des devoirs 51

13.Corrigé PC1 : Interférences et probabilités 53
1. Interférences, relation d’incertitude, ondes de matière . . . . . . . . . . 53

1.1. Nature ondulatoire des photons . . . . . . . . . . . . . . . . . . 53
1.2. Ondes de matière . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2. Loi de désintégration exponentielle . . . . . . . . . . . . . . . . . . . . 55

14.Corrigé PC2 : Transformée de Fourier et relation d’incertitude 57
1. Propriétés générales de la transformation de Fourier . . . . . . . . . . 57
2. Transformation de Fourier et inégalités de Heisenberg . . . . . . . . . . 58
3. Évolution du paquet d’onde libre . . . . . . . . . . . . . . . . . . . . . 60

15.Corrigé PC3 : Barrière de potentiels et effet tunnel 63

4



Table des matières

2. Conditions de raccordement à l’interface d’un potentiel discontinu. . . 63
3. Barrière de potentiel à une dimension - Effet tunnel. . . . . . . . . . . 64
4. Application à la marche de potentiel à une dimension. . . . . . . . . . 66
5. Résonance de diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

16.Corrigé PC4 : Mouvement de particules quantiques à une dimensions :
états liés 67
1. Évolution temporelle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2. Invariance par parité . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3. États isotropes de l’atome d’hydrogène . . . . . . . . . . . . . . . . . . 68

17.Corrigé PC5 : L’oscillateur harmonique 71
1. Notations de Dirac et relations de commutation dans l’espace des états 71
2. L’oscillateur harmonique . . . . . . . . . . . . . . . . . . . . . . . . . . 72

18.Corrigé PC6 : Expérience de Stern et Gerlach 77
1. Théorème d’Ehrenfest . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
2. Moment cinétique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

2.1. Description classique : précession de Larmor . . . . . . . . . . . 78
2.2. Description quantique . . . . . . . . . . . . . . . . . . . . . . . 78

19.Corrigé PC7 : Dynamique d’un système à deux niveaux 81
1. Oscillation de Rabi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

8. Corrigé PC8 : Cryptographie quantique 85
1. États de spin 1

2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
2. État intriqué de deux spins . . . . . . . . . . . . . . . . . . . . . . . . 86

9. Corrigé PC9 : Molécule de Benzène 89
1. Un modèle simple pour la molécule de benzène . . . . . . . . . . . . . 89
2. La molécule de cyclooctatétraène . . . . . . . . . . . . . . . . . . . . . 91

10.Corrigé devoir maison 0 : transformée de Fourier et relation d’incertitude 93
1. Particule libre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
2. Oscillateur harmonique . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

11.Corrigé du premier devoir à la maison 99
1. Courant de probabilité . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
2. Marche de potentiel à une dimension. . . . . . . . . . . . . . . . . . . . 101
3. Demi-tour devant un précipice . . . . . . . . . . . . . . . . . . . . . . . 103
4. Étalement du paquet d’onde . . . . . . . . . . . . . . . . . . . . . . . . 104

12.Corrigé du second devoir à la maison 107
1. Effet tunnel résonnant et contrôle de la transmission d’un électron à

travers une barrière . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5



Table des matières

2. États cohérents de l’oscillateur harmonique . . . . . . . . . . . . . . . 108

III. Compléments : exercices non donnés, etc. 111

1. Compléments 113
1. Conséquences de la relation d’incertitude de Heisenberg . . . . . . . . 113
2. Le puits carré infini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
3. Effet tunnel avec double puits . . . . . . . . . . . . . . . . . . . . . . . 114
4. Application à une barrière infiniment haute et mince. . . . . . . . . . . 116

2. Relation d’incertitude et gravitation quantique 119
0.1. Contexte physique . . . . . . . . . . . . . . . . . . . . . . . . . 120

1. Corrigé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

3. Filtres à spins et Corrélations 123
1. Filtres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

1.1. Corrélations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
2. Corrigé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

2.1. Filtres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
2.2. Corrélations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4. États cohérents de l’oscillateur harmonique 127
1. Chaton de Schrödinger (“Schrödinger’s kitten”) . . . . . . . . . . . . . 128
2. corrigé États cohérents de l’oscillateur harmonique . . . . . . . . . . . 129
3. corrigé Chaton de Schrödinger (« Schrödinger’s kitten ») . . . . . . . . 130

6



Première partie .

Enoncés des petites classes et
des devoirs à la maison

1





1. PC1 : Interférences et probabilités

Mécanique quantique (PHY 311)
Pierre Vanhove

PC du 15 avril 2015

1.1. Interférences, relation d’incertitude, ondes de matière

Figure 1. – À gauche : représentation d’un expérience de fentes d’Young. À droite :
une photographie de l’intensité lumineuse sur l’écran montrant le phé-
nomène d’interférences.

On réalise une expérience de fentes d’Young 1 en utilisant une onde incidente plane
et monochromatique, de vecteur d’onde ~k parallèle à un axe Oz et de longueur d’onde
λ. La distance entre les deux fentes F1 et F2 (chacune parallèle à l’axe Oy) sera notée
a, et la distance entre le plan des fentes et l’écran sera notée D (on notera O′x′ l’axe
sur l’écran parallèle à Ox). Le repère (O, x, y, z) est orthogonal. 2

1.1.1. Nature ondulatoire des photons

Dans un premier temps on s’intéresse à la nature ondulatoire des photons.

1. Thomas Young (1773-1829).
2. Richard Feynman a qualifié cette expérience de "phenomenon which is impossible . . . to explain

in any classical way, and which has in it the heart of quantum mechanics. In reality, it contains the
only mystery of quantum mechanics." The Feynman Lectures on Physics, Volume III. Massachusetts,
USA : Addison-Wesley
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1. PC1 : Interférences et probabilités

a) En faisant quelques approximations (que l’on justifiera) sur la diffraction par les
deux fentes, montrer que le champ électrique sur l’écran peut s’écrire sous la forme

E = E0 [cos(ωt− kL1) + cos(ωt− kL2)] , (1)

où L1 et L2 sont les distances des fentes F1 et F2 au point d’observation sur l’écran.
En déduire la valeur de l’interfrange i en fonction de a, D et λ.

b) Donner l’expression de l’intensité proportionnelle à la valeur moyenne temporelle
〈E2〉t.

On considère maintenant l’aspect corpusculaire des photons. On va essayer de dé-
terminer par quel chemin le photon est passé. L’écran est supposée mobile le long de
l’axe Ox. On mesure la quantité de mouvement que chaque photon cède à l’écran lors
de son passage par une des fentes.

c) Quelle est la quantité de mouvement des photons incidents ?

d) Calculer l’impulsion p(1)
x (respectivement p(2)

x ) transmise à la plaque si le photon
détecté en x′ est passé par la fente F1 (respectivement F2). Exprimer |p(1)

x − p(2)
x |

en fonction de a, D et λ.

e) Quelle condition doit-on imposer à l’incertitude ∆px sur l’impulsion de la plaque si
l’on veut pouvoir séparer les deux possibilités précédentes ? En utilisant la relation
de Heisenberg, ∆x∆px ≥ ~/2, montrer que la position de la plaque P a une
dispersion ou « incertitude » minimale ∆x que l’on calculera et que l’on comparera
à l’interfrange. Conclusion ?

1.1.2. Ondes de matière

Figure 2. – À gauche : photographie du dispositif expérimental (La Recherche 247,
oct. 1992). À droite : schéma de principe de l’expérience.

On s’intéresse maintenant aux ondes de matières. En 1991, O. Carnal et J. Mlynek
ont réalisé une expérience de fentes d’Young réalisée avec des atomes d’hélium 4. 3

3. O. Carnal et J. Mlynek, “Young’s double-slit experiment with atoms : A simple atom interfe-
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1.2. Loi de désintégration exponentielle

f) Pour les ondes de matière, il faut remplacer la longueur d’onde optique λ par la
longueur d’onde de de Broglie λdB. Les atomes du jet initial ont une vitesse de
v = 9.7 102m/s. Calculer la longueur d’onde λdB.

g) Quel est l’interfrange mesurée dans cette expérience, sachant que D = 64cm et
a = 8µm ?

Valeurs numériques : Un atome d’hélium 4 a pour masse mHe4 ' 4 1.661 10−27 kg.
La constante de Planck h ' 6.63 10−34 J s.

1.2. Loi de désintégration exponentielle

La loi de désintégration exponentielle est très importante en physique, car elle
repose sur l’hypothèse fondamentale que le processus responsable de la désintégration
n’a « pas de mémoire ». La décroissance radioactive suit une loi exponentielle.

Une loi de probabilité sans mémoire se traduit mathématiquement par le fait que
la probabilité conditionnelle P (T > t1 + t2|T > t1) que la particule ne se soit pas
désintégrée après une durée t1 + t2 sachant qu’elle ne s’est pas désintégrée après une
durée t1, et égale à P (T > t2) la probabilité de ne pas s’être désintégrée après une
durée t2. En termes mathématiques nous avons

P (T > t1 + t2|T > t1) = P (T > t2), ∀t1, t2 ≥ 0 . (2)

Insistons sur la différence entre cette propriété d’absence de mémoire et l’indépen-
dance des événements. La relation (2) est différente de

P (T > t1 + t2|T > t1) = P (T > t2 + t1), ∀t1, t2 ≥ 0 . (3)

Le but de l’exercice est de déterminer la probabilité pour qu’une particule non
encore désintégrée à l’instant t0 antérieur à t, se désintègre entre t et t+ dt.

a) Soit F (t) la probabilité que la durée de vie soit supérieure à t. Montrer que l’ab-
sence de vieillissement implique que

F (t1 + t2) = F (t1)F (t2) . (4)

b) Résoudre cette équation pour en déduire que F (t) est une loi exponentielle.

On définit la densité de probabilité f(t) := F (t)/
∫∞
t0
F (t)dt.

c) Calculer la valeur moyenne T := 〈t−t0〉 où 〈· · · 〉 désigne la valeur moyenne. Calcu-
ler la dispersion (ou écart type) (∆T )2 := 〈(t−t0−T )2〉. Quelle est l’interprétation
physique ?

rometer”, Phys. Rev. Lett. 66, 2689 (1991). Une autre expérience publiée simultanément est D.W.
Keith et al., “An interferometer for atoms”, Phys. Rev. Lett. 66, 2693 (1991).
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1. PC1 : Interférences et probabilités

Cette partie n’est pas traitée en PC
Nous considérons maintenant une autre méthode basée sur une équation différen-

tielle. Cette méthode est celle présentée dans l’appendice A page 430 du livre de cours
de J.-L. Basdevant et J. Dalibard. 4

Soit w(t) la densité de probabilité (inconnue) de l’instant de désintégration de la
particule, vérifiant par définition

∫ ∞

t0

w(t)dt = 1 . (5)

C’est-à-dire que la particule se désintègre à un instant t > t0.

d) Donner en fonction de w l’expression de la probabilité p pour que la particule se
désintègre entre t0 et t, puis celle de la probabilité q pour que la particule soit
encore présente à l’instant t.

e) En écrivant que la probabilité conditionnelle pour que la particule se désintègre
entre t et t + dt, sachant qu’elle est présente à t, est indépendante de t, montrer
que

w(t) = w(t0)

∫ ∞

t
w(u)du . (6)

Résoudre cette équation pour en déduire que w(t) = f(t).

Les atomes radioactifs possèdent une durée de vie qui suit une loi exponentielle.

f) On appelle demi-vie δ le temps au bout duquel la moitié des particules se sont
désintégrées. Donnez l’expression de δ en fonction de τ .

g) Quelle est la durée de vie moyenne d’un noyau d’iode 131 ayant un demi-vie de
8.02 jours ?

Exemples : période des Noyaux radioactifs

noyau uranium 238 carbone 14 césium 137
période τ 4.5 109 an 5700 an 30.15 an

1.3. Interféromètrie et physique fondamentale

Grâce à leur grande sensibilité les interféromètres sont utilisés pour détecter des
signaux astrophysiques et cosmologiques comme le Very Large Telescope au Chili ou
les interféromètres de Michelson VIRGO (Pise, Italie), LIGO (USA).
Afin d’éviter d’avoir à utiliser des miroirs de grande taille, qui sont difficiles et

coûtent chers à réaliser, on utilise un ensemble de petits télescopes. Le principe dit
de « synthèse d’ouverture » est similaire à celui des fentes d’Young. Il a été suggéré
par Fizeau au XIXème siècle et mis en pratique par Pearse et Michelson en 1920

4. Jean-Louis Basdevant et Jean Dalibard “Mécanique Quantique” Ecole Polytechnique.
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1.3. Interféromètrie et physique fondamentale

au télescope du Mont Wilson aux États Unis pour mesurer la taille de Bételgeuse
dans la constellation d’Orion (voir fig. 3). Les trous d’Young sont remplacés par deux
miroirs de télescopes. Le signal est ensuite combinée sur un détecteur afin de mesurer
la différence de marche des faisceaux incidents.

Figure 3. – À gauche Bételgeuse est une supergéante rouge située dans la constella-
tion d’Orion, à 640 années-lumière de la Terre. À droite, le « Very Large
Telescope » au Chili.

Cette technique est délicate car il faut un excellent contrôle des chemins optiques
parcourus dans les deux bras de l’interféromètre. Mis en service en 2001, le « Very
Large Telescope » construit au Chili par l’Observatoire Européen Austral, est un
réseau de quatre télescopes de 8 m de diamètre chacun réalisant un diamètre équi-
valent d’une centaine de mètre (voir fig 3). Cette technique est basée sur des travaux
d’Antoine Labeyrie du l’Observatoire de Haute Provence.

Figure 4. – Vue d’interféromètre VIRGO et schéma de l’interféromètre LIGO

Une autre application de l’interférométrie sont les expériences VIRGO et LIGO
(fig. 4) dont le but est la détection des ondes gravitationnelles prédites par la relativité
générale d’Einstein. La principe de fonctionnement est basée sur le fait que lorsqu’une
onde gravitationnelle passe à un endroit, elle y courbe très légèrement l’espace-temps.
La lumière suivant la courbure de l’espace-temps, les installations de VIRGO et LIGO
ont pour but de détecter une différence entre la distance parcourue par deux faisceaux
lasers.
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1. PC1 : Interférences et probabilités
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2. PC2 : Transformée de Fourier et
relation d’incertitude

Mécanique quantique (PHY 311)
Pierre Vanhove

PC du 22 avril 2015

2.1. Propriétés générales de la transformation de Fourier

On définit la transformée de Fourier f(x) de f̃(k) selon

f(x) =
1√
2π

∫ +∞

−∞
f̃(k)eikxdk . (1)

On suppose que la transformée de Fourier satisfait toutes les conditions pour une
bonne définition de l’intégrale. En particulier nous supposons que f ∈ L2(R). 1

On peut montrer que la transformation inverse est donnée par

f̃(k) =
1√
2π

∫ +∞

−∞
f(x)e−ikxdx . (2)

a) Montrer que si f(x) est la transformée de Fourier de f̃(k), alors f(ax) est la
transformée de Fourier de f̃(k/a)/|a| pour a ∈ R∗.

b) Montrer que si f̃(k) est réelle et paire, alors f(x) est réelle et paire. Montrer que
si f̃(k) est réelle et impaire, alors f(x) s’écrit f(x) = ih(x), où h(x) est réelle et
impaire.

c) Quelles sont les transformées de Fourier des dérivées successives f̃ ′(k), . . ., f̃ (n)(k) ?

d) Isométrie : on considère f1(x) transformée de Fourier de f̃1(k) et f2(x) transformée
de Fourier de f̃2(k) ; montrer que

∫ +∞

−∞
f̃∗1 (k)f̃2(k)dk =

∫ +∞

−∞
f∗1 (x)f2(x)dx. (3)

e) Déterminer la transformée de Fourier d’un produit de convolution

f̃3(k) =
1√
2π

∫ +∞

−∞
dk′ f̃1(k′) f̃2(k − k′). (4)

1. L’appendice B du livre de cours J.-L. Basdevant et J. Dalibard “Mécanique Quantique” Ecole
Polytechnique contient des détails sur les transformées de Fourier.
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2. PC2 : Transformée de Fourier et relation d’incertitude

2.2. Transformation de Fourier et inégalités de Heisenberg

On choisit f̃(k) une fonction normée et centrée à l’origine :
∫ +∞

−∞
|f̃(k)|2dk = 1;

∫ +∞

−∞
|f̃(k)|2kdk = 0 . (5)

On suppose que sa transformée de Fourier f(x) satisfait les mêmes hypothèses. On
définit les variances :

(∆k)2 :=

∫ +∞

−∞
|f̃(k)|2k2dk et (∆x)2 :=

∫ +∞

−∞
|f(x)|2x2dx . (6)

a) Montrer que ∆x∆k ≥ 1/2. On pourra étudier pour λ réel, le signe de

I(λ) =

∫ +∞

−∞

∣∣∣∣∣kf̃(k) + λ
df̃

dk

∣∣∣∣∣

2

dk. (7)

b) Montrer que si ∆x∆k = 1/2 alors f(x) et f̃(k) sont des gaussiennes. On cherchera
par exemple d’abord la forme de f̃(k) en montrant quelle satisfait une équation
différentielle simple que l’on déterminera.

On utilisera l’intégrale suivante pour α > 0

∫ +∞

−∞
e−α t

2
dt =

√
π

α
. (8)

c) Réciproquement, montrez que si f̃(k) est de la forme

f̃(k) = f̃0e
− k2

2λ0 , (9)

avec f̃0 et λ0 constantes réelles telles que f2 est normalisée, alors ∆k2 = λ0/2, et
que ∆x∆k = 1/2.

d) En utilisant le lien impulsion-vecteur d’onde en déduire l’inégalité de Heisenberg
∆x∆p ≥ ~/2.

2.3. Évolution du paquet d’onde libre

On considère le mouvement libre, à une dimension, d’une particule de masse m
dont l’état quantique est défini à l’instant t par le paquet d’onde suivant

ψ(t, x) =
1√
2π~

∫
ψ̃(t, p)ei

px
~ dp . (10)
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2.4. Relations d’incertitude et physique fondamentale

a) Rappeler (sans démonstration) l’expression de ψ̃(t, p) en fonction de ψ(t, x). Quelle
est la densité de probabilité de l’impulsion p à l’instant t ? Quelle est la relation
entre l’énergie E et l’impulsion p de la particule ?

b) Rappeler l’expression de la position moyenne 〈x〉(t) et de l’impulsion moyenne
〈p〉(t) sous forme d’une intégrale sur x, faisant intervenir en particulier la fonction
d’onde ψ(t, x).

c) Calculer la dérivée par rapport au temps de 〈x〉(t) et montrer en particulier que

d〈x〉
dt

=
〈p〉
m

(11)

d) Que devient cette relation si la particule évolue dans un potentiel V (x) ?

2.4. Relations d’incertitude et physique fondamentale

De manière générale la relation d’incertitude d’Heisenberg donne que pour deux
observables Â et B̂, les valeurs (∆a)2 := 〈ψ|(Â)2|φ〉 − 〈ψ|Â|ψ〉2 et (∆b)2 :=
〈ψ|(B̂)2|φ〉 − 〈ψ|B̂|ψ〉2 satisfont l’inégalité

∆a∆b ≥ 1

2

∣∣∣〈ψ|[Â, B̂]|ψ〉
∣∣∣ . (12)

Ainsi on peut simultanément mesure que des observables qui commutent.

Figure 1. – Simulation montrant trois états successifs : les atomes sont de plus en
plus denses. De gauche à droite : la température du système étant su-
périeure à la température critique TC , la température T < TC , et fina-
lement T � TC .
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2. PC2 : Transformée de Fourier et relation d’incertitude

Le relation d’incertitude de Heisenberg joue un rôle important dans le mécanisme
de piégeage des atomes et les condensats de Bose-Einstein. Une description de ces
phénomènes est donnée dans ce texte de Jean Dalibard “La condensation de Bose-
Einstein en phase gazeuse” (Images de la physique 2000)
http://www.phys.ens.fr/ dalibard/publications/images_physique.pdf
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3. PC3 : Barrière de potentiels et effet
tunnel

Mécanique quantique (PHY 311)
Pierre Vanhove

PC du 6 mai 2015

3.1. L’effet tunnel dans la vie quotidienne

Figure 1. – Effet tunnel à travers une barrière de potentiel. L’onde incidente ve-
nant de la gauche traverse la barrière de potentiel (en bleu) pour être
transmise à droite.

L’effet tunnel désigne la propriété que possède un objet quantique de franchir une
barrière de potentiel même si son énergie est inférieure à l’énergie minimale requise
pour franchir classiquement cette barrière. C’est un effet purement quantique, qui ne
peut pas s’expliquer par la mécanique classique. Pour une telle particule, la fonction
d’onde, dont le carré du module représente la densité de probabilité de présence,
ne s’annule pas au niveau de la barrière, mais s’atténue à l’intérieur de la barrière,
pratiquement exponentiellement pour une barrière assez large. Si, à la sortie de la
barrière de potentiel, la particule possède une probabilité de présence non nulle, elle
peut traverser cette barrière. Cette probabilité dépend des états accessibles de part
et d’autre de la barrière ainsi que de l’extension spatiale de la barrière.

L’effet tunnel est en jeu dans de nombreux phénomènes physiques

• les molécules : NH3, par exemple. L’effet tunnel est entre deux minima du
potentiel pour les configurations de la molécule d’ammoniaque. Voir figure 2

• les modélisations des désintégrations (fission, radioactivité alpha). C’est Georges
Gamow qui a proposé une explication de ce phénomène en 1928. Voir figure 3

13



3. PC3 : Barrière de potentiels et effet tunnel

Figure 2. – Configurations de la molécule d’ammoniaque et le potentiel décrivant le
système

• les diodes à effet tunnel,

• la mémoire MRAM utilisant un effet tunnel magnétique mettant en jeu des
électrons,

• les microscopes à effet tunnel,

• l’effet Josephson est l’apparition d’un courant entre deux matériaux supracon-
ducteurs séparés par une couche faite d’un matériau isolant ou métallique non
supraconducteur. Ce phénomène prédit par Brian David Josephson en 1962 a
été récompensé par le prix Nobel en 1973.

Figure 3. – Potentiel subi par la particule α en fonction de sa distance au noyau.

3.2. Conditions de raccordement à l’interface d’un
potentiel discontinu.

a) On considère une solution stationnaire de l’équation de Schrödinger (à une dimen-
sion) de la forme

ψ(t, x) = ϕ(x)e−iωt . (1)

14



3.3. Barrière de potentiel à une dimension - Effet tunnel.

Figure 4. – Potentiels potentiels physiques et leurs approximations sous forme de
puits carrés.

Quel est le lien entre ω et l’énergie associée à l’état stationnaire ?

b) Si le potentiel V est continu, que dire de la continuité de ϕ et ϕ′ ?

c) On suppose que le potentiel V admet une discontinuité en x = 0 tout en restant
borné. En considérant ce cas comme le cas limite d’un potentiel continu, que peut
on dire de la continuité de ϕ et ϕ′ dans ce cas. Que dire de la continuité de ϕ′′ ?

d) Que se passe-t-il si le potentiel est une fonction δ de Dirac (un potentiel infiniment
haut et infiniment fin) V (x) = K δ(x) ?

3.3. Barrière de potentiel à une dimension - Effet tunnel.

On considère le potentiel V (x) tel que V (x) = 0 si x < 0, V (x) = V0 > 0 si
0 ≤ x ≤ a, V (x) = 0 si x > a, et on cherche une solution stationnaire ϕ(x) de
l’équation de Schrödinger pour une particule de masse m et pour une énergie E telle
que 0 < E < V0.

a) Montrer (sans calculer les coefficients A, . . . , G) que ϕ(x) peut se mettre sous la
forme :

ϕI(x) = Aeikx +Be−ikx si x < 0
ϕII(x) = Ce−qx +De+qx si 0 < x < a

ϕIII(x) = F eikx +Ge−ikx si x > a

(2)
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3. PC3 : Barrière de potentiels et effet tunnel

où q et k sont des coefficients positifs que l’on précisera en fonction de E, V0, m,
a et ~.

b) Comment procèderait-on si on voulait déterminer les constantes A,B,C,D, F,G
(ne pas essayer de le faire à ce stade). Quelle est la dimension de l’espace vectoriel
des solutions a k donné ?

c) On suppose que la situation physique envisagée correspond à des particules émises
par une source située à gauche du potentiel, en −∞. Quel coefficient de ϕ(x) faut-il
alors annuler par hypothèse ?

d) Dans la région x < 0, on peut décomposer la fonction d’onde en un terme d’ampli-
tude de module carré JI correspondant à l’onde incidente et un terme d’amplitude
de module carré JR correspondant à l’onde réfléchie, et on définit les coefficients
de réflexion R et de transmission T de la barrière par les relations :

R =

∣∣∣∣
JR
JI

∣∣∣∣ et T =

∣∣∣∣
JT
JI

∣∣∣∣ . (3)

Exprimer R et T en fonction des coefficients non nuls de ϕ(x) où JT correspond
au module carré de l’onde transmise.

e) En utilisant les relations de continuité de ϕ(x) et de sa dérivée, calculer F et B
en fonction de A. Montrer que les facteurs de transmission T et de réflexion R
s’écrivent

T =
(2qk)2

(2qk)2 cosh2(qa) + (q2 − k2)2 sinh2(qa)
et R =

sinh2(qa)(q2 + k2)2

(2qk)2 cosh2(qa) + (q2 − k2)2 sinh2(qa))
.

(4)

f) On suppose que qa� 1 (barrière « épaisse »). Calculer le coefficient de transmis-
sion T de la barrière, et montrer qu’il peut se simplifier sous la forme suivante :

T ' 16
E(V0 − E)

V 2
0

e−2qa . (5)
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3.4. Application à la marche de potentiel à une dimension.

g) Application numérique :

i) On considère un électron d’énergie E = 1 eV pour une barrière de potentiel
avec V0 = 2 eV et d’épaisseur a = 1 Å. Calculer la valeur du coefficient de
transmission T .

ii) On considère maintenant le cas d’un proton de même énergie sur la même
barrière. Que vaut le coefficient de transmission ?

On pourra se servir des relations utiles : ~c = 197, 3 eV.nm et mec
2 = 0, 511 MeV

et mpc
2 = 938, 272 MeV. Un électron-volt 1 eV = 1.783 10−36 kg.c2. Un Ångström

1 Å= 10−10m.

3.4. Application à la marche de potentiel à une
dimension.

On considère maintenant le potentiel V (x) en «marche d’escalier » tel que V (x) = 0
si x ≤ 0 et V (x) = V0 si x > 0. Toujours avec E < V0, déduisez des résultats de
l’exercice précédant la valeur de R si 0 < E < V0 ? Quel est le profil de la fonction
d’onde dans la région x > 0.

3.5. Résonance de diffusion

On s’intéresse maintenant à nouveau au cas de la partie 3.3 mais avec l’énergie E

prise supérieure à la hauteur V0 de la barrière. On posera q′ =
√

2m(E − V0)

~
.

a) Écrire l’expression de la fonction d’onde dans les trois régions de l’espace. On
remarquera que la grandeur q introduite dans l’exercice 3.3 est maintenant imagi-
naire pure et que l’on retrouve bien l’expression correcte de la fonction d’onde à
condition de poser q = iq′.
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3. PC3 : Barrière de potentiels et effet tunnel

b) En utilisant directement les résultats de l’exercice 3.3, calculer le coefficient de
transmission T , que l’on exprimera en fonction de k, q′ et q′a, puis de E, V0 et
q′a.

On rappelle que sinh iθ = i sin θ et cosh iθ = cos θ.

c) Montrer que pour certaines valeurs de l’énergie appelées résonances, on a T = 1.
Interpréter physiquement la condition de résonance.

d) Calculer R puis R+ T .
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4. PC4 : Mouvement de particules
quantiques à une dimensions : états
liés

Mécanique quantique (PHY 311)
Pierre Vanhove

PC du 13 mai 2015

4.1. Évolution temporelle

On considère la fonction d’onde ψ(t, x) =
∑

n

cn(t)ϕn(x) où les ϕn(x) sont les états

propres du hamiltonien Ĥϕn(x) = Enϕn(x). On démontre en analyse hilbertienne
que les états propres d’un opérateur hermitien forment une base orthonormée de
l’espace des états, c’est-à-dire qu’une telle décomposition est toujours possible, et que
les ϕn(x) sont « orthonormés » au sens des fonctions :

∫ ∞

−∞
ϕ∗n(x)ϕm(x)dx = δnm . (1)

a) Montrer en utilisant l’équation de Schrödinger que l’on a :

ψ(t, x) =
∑

n

cn(0)e−
iEnt

~ ϕn(x). (2)

4.2. Invariance par parité

a) On considère une particule dans un potentiel invariant par parité : V (−r) = V (r).
Soit ψ(r) un état propre de Ĥ. Montrer que ψ(−r) est aussi état propre, pour la
même valeur propre.

b) En déduire que l’on peut chercher les états propres donnés par des fonctions paires
ou impaires.

c) Dans le cas où les niveaux d’énergie sont non dégénérés, montrer que les états
propres sont nécessairement pairs ou impairs.

d) À la lumière de ces considérations expliquez la forme des fonctions d’ondes du puits
carré infini données cours numéro 3. Le puits carré infini est défini par V (x) = 0
pour x ∈ [0, L] et +∞ pour x < 0 et x > a. Les fonctions d’ondes sont ψn(x) =√

2
L sin

(
nπ
L x
)
.
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4. PC4 : Mouvement de particules quantiques à une dimensions : états liés

4.3. Etats isotropes de l’atome d’hydrogène

Figure 1. – manuscrit de l’article de Niels Bohr de juillet 1913 (avec la permission
de l’« Archive Niels Bohr », Copenhague)

Les niveaux d’énergie des états à symétrie sphérique de l’atome d’hydrogène
peuvent s’obtenir par un calcul à une seule dimension en factorisant la dépendance
angulaire. On considère un électron de masse m dans un potentiel V (x) tel que :

V (x) =∞ si x ≤ 0; V (x) = −α~c
x

si x > 0, (3)

où α = q2/(4πε0~c) ' 1/137 (constante sans dimension), c est la vitesse de la lumière
et q est la charge élémentaire.

a) Montrer que la fonction d’onde ψ(x) = Cxe−x/a0 pour x ≥ 0 et ψ(x) = 0 pour x <
0 est fonction propre de l’hamiltonien pour une valeur de a0 que l’on déterminera.
Calculer la valeur propre E1 correspondante. On exprimera E1 et a0 en fonction
de m, α, ~ et c.

b) Calculer numériquement E1 et a0. On utilisera que ~c = 197, 3 eV.nm et mc2 =
0, 511 MeV.

c) Déterminer la constante de normalisation C en fonction de a0.

d) Calculer la valeur moyenne de 1/x dans l’état |ψ〉 et en déduire la valeur moyenne
de l’énergie potentielle. Calculer la valeur moyenne de l’énergie cinétique. Quelle
relation, valable en mécanique classique, y a-t-il entre ces deux quantités ?

e) Plus généralement, on cherche maintenant des solutions sous la forme ψn(x) =
exp(−xλn/a0)yn(x/a0) correspondant à l’énergie propre En, avec les changements
de variable λn =

√
En/E1. À quelle équation différentielle doit obéir yn(x) ?
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4.3. Etats isotropes de l’atome d’hydrogène

f) On suppose que yn(x) = (x/a0)s
∞∑

q=0

cq(x/a0)q avec c0 6= 0. Montrer que s = 1

et que la série est forcément finie. En déduire les niveaux d’énergie En possibles.
Combien y en a-t-il ?
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4. PC4 : Mouvement de particules quantiques à une dimensions : états liés
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5. PC5 : L’oscillateur harmonique

Mécanique quantique (PHY 311)
Pierre Vanhove

PC du 27 mai 2015

5.1. Notations de Dirac et relations de commutation dans
l’espace des états

• Les éléments de l’espace de Hilbert EH sont appelés kets et notés |ψ〉.

• À tout ket |χ〉 de EH on associe l’application linéaire complexe suivante

χ : EH → C
|φ〉 7→ χ(|φ〉) (1)

• Cette application définit une forme linéaire telle que pour deux nombres com-
plexes λ1 et λ2 quelconques et deux kets |φ1〉 and |φ2〉 de l’espace de Hilbert on
a

χ(λ1 |φ1〉+ λ2|φ2〉) = λ1 χ(|φ1〉) + λ2 χ(|φ2〉) . (2)

• L’ensemble de ces applications linéaires constituent un espace vectoriel, dit es-
pace dual, E∗H . Les éléments sont appelés des bra et sont notés 〈χ|. On utilise
la notation suivante

χ(|φ〉) := 〈χ|φ〉 . (3)

Ainsi un bra et un ket forment un bracket c’est-à-dire une « parenthèse ».

• La relation entre l’espace de Hilbert et son dual se traduit par la relation

(χ(|φ〉))∗ = (〈χ|φ〉)∗ = 〈φ|χ〉 = φ(|χ〉) (4)

qui implique
(|χ〉)† = 〈χ| (5)

• Si en général on peut toujours associer un bra dual 〈φ| au ket |φ〉, il n’existe pas
toujours de ket dual à un bra donné. En général les espaces de Hilbert sont de
dimensions infinie est (E∗H)∗ 6= EH le dual du dual n’est pas l’espace d’origine.

• On dispose d’opérateurs linéaires sur EH , notés Â, B̂, ... et on suppose que l’on
peut définir un produit (interne) entre ces opérateurs noté simplement Â · B̂.
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5. PC5 : L’oscillateur harmonique

On suppose ce produit associatif par rapport à l’action d’un opérateur sur un
ket (noté Â|ψ〉), c’est-à-dire que l’on a

(Â · B̂)|ψ〉 = Â(B̂(|ψ〉)) = Â(B̂|ψ〉) (6)

• Étant donné un opérateur Â, son hermitique conjugué (ou adjoint) Â† vérifie

ψ(Â†|φ〉) = 〈ψ|A†|φ〉 = (φ|Â|ψ〉)∗ . (7)

Un opérateur Â est dit hermitien si et seulement si Â† = Â.

a) Vérifier que les définitions (2) et (4) impliquent que 〈χ|φ〉 définit un produit scalaire
linéaire à droite et anti-linéaire à gauche.

b) Montrer que si λ est un nombre complexe alors |λψ〉 = λ|ψ〉. Comment s’exprime
〈λψ| en fonction de λ∗ et 〈ψ| ?

c) On considère le ket Â|ψ〉, montrer que le bra associé peut s’écrire 〈ψ|Â†.

d) Montrer que l’on a (Â · B̂)† = B̂† · Â†

e) En considérant l’action des observables position et impulsion sur une fonction
d’onde quelconque ψ(x), montrer que :

i) Les opérateurs x̂ et p̂ sont hermitiens ;

ii) on a dans l’espace des états la relation générale : [x̂, p̂] = x̂ · p̂− p̂ · x̂ = i~I.

Par la suite, l’opérateur identité I sera le plus souvent sous-entendu.

5.2. L’oscillateur harmonique

On considère le mouvement à une dimension d’une particule soumise à une force de
rappel en −Kx, donc à un potentiel en 1

2Kx
2 (oscillateur harmonique). L’hamiltonien

s’écrit donc :

Ĥ0 =
p̂2

2m
+

1

2
Kx̂2, avec K = mΩ2. (8)

a) Ecrire l’équation de Schrödinger indépendante du temps pour la fonction d’onde
φ(x).

Les solutions de cette équation et les valeurs propres associées, représentées du
la figure 1, ne sont a priori pas évidentes. Le but de cet exercice est de montrer
qu’on peut déterminer complètement les énergies et les états propres du hamiltonien
par une méthode purement algébrique (due à Dirac), en travaillant directement dans
l’espace des états, et non dans celui des fonctions d’onde. Cette méthode est basée
sur l’utilisation de la relation de commutation entre observables [x̂, p̂] = i~.
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5.2. L’oscillateur harmonique

Figure 1. – Les cinq premiers niveaux d’énergie et profil des fonctions d’ondes de
l’oscillateur harmonique.

b) En considérant l’expression de l’opérateur sans dimension Ĥ =
Ĥ0

~Ω
, montrer

que les opérateurs X̂ =

√
mΩ

~
x̂ et P̂ =

p̂√
m~Ω

sont sans dimensions, et que

Ĥ =
P̂ 2

2
+
X̂2

2
avec

[
X̂, P̂

]
= i.

c) L’astuce de Dirac a été de définir les opérateurs â =
1√
2

(X̂ + iP̂ ) et

â+ =
1√
2

(X̂ − iP̂ ). Ces opérateurs sont-ils hermitiens ? Calculer le commutateur
[
â, â+

]
. Calculer [N̂ , â] et [N̂ , â+]. On pose N̂ = â+â. Montrer que N̂ est hermitien

et que Ĥ = N̂ +
1

2
.

d) Soit ν une valeur propre de N̂ , de vecteur propre associé |φν〉 : N̂ |φν〉 = ν |φν〉.

i) Montrer en calculant la norme de â |φν〉 que ν ≥ 0, et que â |φν〉 = 0 si et
seulement si ν = 0.

ii) Montrer en calculant la norme de â+ |φν〉 que â+ |φν〉 6= 0.

iii) Montrer que si ν > 0, alors â |φν〉 est vecteur propre de N̂ avec la valeur
propre (ν − 1).

iv) Montrer que les propriétés qui viennent d’être démontrées ne peuvent être
satisfaites simultanément que si ν est un entier naturel. On posera dans la
suite ν = n.
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5. PC5 : L’oscillateur harmonique

e) Montrer que â+ |φn〉 est vecteur propre de N̂ avec la valeur propre (n+ 1), et en
déduire que tous les entiers naturels sont valeurs propres de N̂ . Quelles sont les
énergies possibles de la particule ? Comment peut-on “interpréter” les opérateurs
â et â+ ?

f) Quelle est la valeur de l’énergie de l’état fondamental ? Déterminer la fonction
d’onde φ0(x) en explicitant l’équation opératorielle â |φ0〉 = 0

i) Montrer en utilisant les propriétés de N̂ et la normalisation des états |φn〉
que l’on a (à un facteur de phase arbitraire près) : â |φn〉 =

√
n |φn−1〉 et

â+ |φn〉 =
√
n+ 1 |φn+1〉.

ii) Donner l’expression de |φn〉 en fonction de |φ0〉. Montrer en revenant aux
fonctions d’onde en « représentation x » que l’on peut ainsi déterminer tous
les φn(x). On a donc complètement résolu l’équation différentielle écrite ci-
dessus.

iii) Montrer que X̂ =
1√
2

(
â+ + â

)
et P̂ =

i√
2

(
â+ − â

)
. Utiliser ce résultat pour

déterminer les valeurs de
〈
X̂
〉
,
〈
P̂
〉
,
〈
X̂2
〉
et
〈
P̂ 2
〉
dans le niveau |φn〉. En

déduire ∆x et ∆p, et comparer la valeur du produit ∆x∆p avec la limite
donnée par le principe d’incertitude de Heisenberg.
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6. PC6 : Expérience de Stern et
Gerlach

Mécanique quantique (PHY 311)
Pierre Vanhove

PC du 3 juin 2015

6.1. Théorème d’Ehrenfest

On considère une observable Â et sa valeur moyenne dans l’état |ψ〉 : 〈Â〉 :=
〈ψ|Â|ψ〉.

a) Montrer que si Â ne dépend pas explicitement du temps alors

i~
d〈Â〉
dt

= 〈ψ|[Â, Ĥ]|ψ〉 . (1)

Ce résultat constitue le théorème d’Ehrenfest qui permet de faire le lien entre méca-
nique quantique et mécanique classique.
Comme application considérons le cas d’une particule de masse m évoluant dans

un potentiel unidimensionnel V (x).

b) Établir les équations du mouvement pour les valeurs moyennes 〈X̂〉 et 〈P̂ 〉.

c) On rappelle que la forme générale de la relation d’incertitude d’Heisenberg est
donnée par ∆aE ≥ 1

2 |〈ψ|[Â, Ĥ]|ψ〉|. On définit τ = ∆a/|v| où v = d〈Â〉/dt. À
quoi correspond le temps τ ? Et quelle relation satisfont τ et l’énergie ?

6.2. Moment magnétique

6.2.1. Description classique : précession de Larmor

On considère un électron décrivant une orbite circulaire à vitesse constante.

a) Quel est le rapport, noté γ, entre son moment magnétique ~µ et son moment ciné-
tique ~L.

On admet qu’en présence de champ magnétique (sans champ électrique), lorsque
l’énergie d’interaction entre le champ et le dipole magnétique est suffisamment faible,
on peut encore utiliser la relation précédente entre ~µ et ~L.
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b) Comment évolue un dipôle magnétique dans un champ magnétique uniforme ?
Peut-on avoir un champ magnétique ~B = Bz ~ez avec Bz non constant ?

c) Pour un faisceau de particules incidentes de vitesse ~v = vy~ey et de moments
magnétiques ~µ = µz ~ez orientés positivement et négativement selon l’axe des (Oz),
qu’observe-t-on pour un champ magnétique tel que ∂zBz 6= 0 ?

6.2.2. Description quantique

Dans l’expérience de Stern et Gerlach l’espace des états est exprimé en termes des
vecteurs représentants les projections du spin |+〉 := |Sz,+〉 et |−〉 := |Sz,−〉 selon
l’axe (Oz). Dans cette base l’opérateur moment magnétique prend la forme

µ̂x = µ0

(
0 1
1 0

)
; µ̂y = µ0

(
0 −i
i 0

)
; µ̂z = µ0

(
1 0
0 −1

)
. (2)

d) Soit le vecteur unitaire ~u repéré par les angles polaires θ et ϕ. Quelles sont les
valeurs propres de µ̂~u := µ̂ · ~u ?

e) On suppose le système dans l’état |+〉. Quels sont les résultats possibles d’une me-
sure de µ̂x ? Avec quelles probabilités ? Quel est l’état du système immédiatement
après la mesure ?

f) À un instant immédiatement ultérieur, on mesure µ̂y. Quels sont les résultats
possibles ? Avec quelles probabilités ?

On souhaite maintenant étudier la dynamique du moment magnétique dans un
champ magnétique constant ~B0 parallèle à (Oz). Le hamiltonien s’écrit :

Ĥ = −~̂µ · ~B0 = −µ̂z B0 (3)

À l’instant t = 0, le moment magnétique est préparé dans un état propre |+〉~u de
µ̂~u avec la valeur propre +µ0.

g) Écrire le théorème d’Ehrenfest pour 〈µ̂~u〉 et montrer que la valeur moyenne du
moment magnétique obéit aux équations classiques.

h) On s’intéresse à présent plus généralement à l’évolution du vecteur d’état |ψ(t)〉
que l’on décompose sous la forme

|ψ(t)〉 = c+(t) |+〉+ c−(t) |−〉 . (4)

i) Donner l’expression des coefficients cα(t) en fonction de leurs valeurs à t = 0.

ii) Montrer qu’à l’instant t, |ψ(t)〉 est de la forme |+〉~u(t), pour un vecteur ~u(t)
dont on précisera les angles polaires θ(t) et ϕ(t).

iii) Interprétation physique ?
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7. PC7 : Dynamique d’un système à
deux niveaux

Mécanique quantique (PHY 311)
Pierre Vanhove

PC du 10 juin 20157.1. Oscillation de Rabi

Figure 1. – Système à deux niveaux

On considère un atome à deux niveaux d’énergie E1 et E2 tels que E2 − E1 =
−~ω0 > 0 (voir figure 1), correspondant à deux états normés et orthogonaux que
nous noterons |1〉, considéré comme l’état fondamental, et |2〉, représentant l’état
excité. On supposera que les seuls états accessibles pour cet atome sont décrits par
les vecteurs normés de l’espace de Hilbert à deux dimensions engendrés par la base
B = {|1〉, |2〉}. Le hamiltonien qui régit l’évolution temporelle de l’état de cet atome
s’écrit donc simplement :

Ĥ0 =
~ω0

2
(|1〉〈1| − |2〉〈2|) . (1)

Cet atome est soumis a une excitation laser décrite par un champ électrique classique
E(t) = E0 cos(ωt + φ). Le système étant dans l’état fondamental |1〉, on applique à
l’instant t = 0 une perturbation monochromatique V̂ (t) donnée par

V̂ (t) =
~ω1

2

(
eiωt|1〉〈2|+ e−iωt|2〉〈1|

)
. (2)

a) Montrez que Ĥ(t) := Ĥ0 + V̂ (t) peut se mettre sous la forme Ĥ(t) = R̂(t)
ˆ̃
H1 R̂

†(t)

où ˆ̃
H1 est un Hamiltonien indépendant du temps et R̂(t) est une transformation

unitaire dépendant du temps.
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7. PC7 : Dynamique d’un système à deux niveaux

b) Soit R̂(t) un opérateur unitaire, c’est-à-dire que R̂(t) R̂(t)† = I quelque |ψ(t)〉 =

R̂(t) |χ(t)〉. Montrer que si |ψ(t)〉 satisfait l’équation de Schrödinger i~d|ψ〉dt = Ĥ |ψ〉
alors |χ〉 satisfait l’équation de Schrödinger

i~
d|χ〉
dt

=

(
R̂(t)†ĤR̂(t)− i~R̂(t)†

dR̂(t)

dt

)
|χ〉 . (3)

c) On suppose maintenant l’opérateur d’évolution U(t) tel que |ψ(t)〉 = Û(t)|ψ(0)〉.
Montrer que Û(t) satisfait l’équation de Schrödinger

i~
dÛ(t)

dt
= Ĥ(t)Û(t) . (4)

d) Si Ĥ est indépendant du temps montrer que l’opérateur d’évolution est donné par

Û(t) = exp

(
−iĤt

~

)
. (5)

e) Pour le système de Rabi avec

R̂(t) := exp

(
−iωt

2

(
1 0
0 −1

))
. (6)

Montrer que

Ĥeff := R̂(t)†ĤR̂(t)− i~R̂(t)†
dR̂(t)

dt
(7)

est indépendant du temps.

f) Trouver l’opérateur d’évolution Ûeff pour cet Hamiltonien effectif. On posera Ω =√
(ω − ω0)2 + ω2

1 la fréquence de Rabi.

g) Mettre U(t) sous la forme

Û(t) = R̂(t)

(
u0(t) + uz(t) ux(t)

ux(t) u0(t)− uz(t)

)
(8)

h) En déduire l’expression exacte de la probabilité de transition P12(t) entre l’état
|1〉 et l’état |2〉. Analyser les cas suivants
i) ω � ω0

ii) ω = ω0

iii) ω � ω0
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8. PC8 : Cryptographie quantique

Mécanique quantique (PHY 311)
Pierre Vanhove

PC du 17 juin 2014

8.1. Motivation

Le but de la cryptographie est d’envoyer à un correspondant un message en mi-
nimisant les risques de voir ce message intercepté par un tiers. Ce problème montre
comment la mécanique quantique peut fournir une procédure répondant à ce besoin.
Plus précisément, on suppose ici qu’Alice (A) souhaite envoyer à Bernard (B) une
certaine information que l’on suppose codée en binaire, par exemple :

+ +−−−+ +−−+ . . . (1)

On notera n le nombre de bits de ce message. Alice ne veut transmettre ce message
que si elle s’est préalablement assurée que la communication n’est pas écoutée par un
« espion ».

8.2. États de spin 1
2

On s’intéresse à une particule de spin 1
2 . L’observable de spin est ~̂S = ~~̂σ/2 où les

σi sont les matrices de Pauli donnée par

σx =

(
0 1
1 0

)
; σy =

(
0 −i
i 0

)
; σz =

(
1 0
0 −1

)
. (2)

On note |σz = ±1〉 les états propres de Ŝz avec valeurs propres respectives ±~/2.
Considérons une particule dans l’état de spin |σz = +1〉. On effectue la mesure de la
composante du spin suivant un axe u situé dans le plan xOz et défini par le vecteur
unitaire :

~eu = cos θ~ez + sin θ~ex (3)

a) Rappeler l’observable Ŝ~u := ~̂S · ~eu associée à cette mesure.

b) Montrer que les résultats de mesure possibles sont ±~/2.

c) Montrer que les états propres de l’observable Ŝ~u sont de la forme
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8. PC8 : Cryptographie quantique

|σu = +1〉 = cosϕ|σz = +1〉+ sinϕ|σz = −1〉 (4)
|σu = −1〉 = − sinϕ|σz = +1〉+ cosϕ|σz = −1〉 (5)

Exprimer ϕ en fonction de θ. En déduire les probabilités p±u de trouver ±~/2.

d) Quels sont les états de spin après une mesure ayant donné ±~/2 ?

e) Immédiatement après cette mesure, on mesure la composante du spin suivant l’axe
z.

i) Donner les résultats possibles et leurs probabilités en fonction du résultat
obtenu précédemment le long de u.

ii) Montrer que la probabilité de retrouver la même valeur Sz = +~/2 que dans
l’état initial |σz = +〉 est P++(θ) =

(
1 + cos2 θ

)
/2.

iii) En supposant maintenant que l’état initial est |σz = −1〉, quelle est, dans la
même séquence de mesures, la probabilité P−−(θ) de retrouver −~/2 dans, la
seconde mesure ? Que vaut P+−(θ) ? Commentez les résultats.

8.3. État intriqué de deux spins
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Figure 1. – Source S émettant une paire (a, b) de particules de spin 1
2 . Alice me-

sure la, composante du spin a suivant un axe θa, et Bernard mesure la
composante du spin b suivant un axe θb.

On dispose d’une source S qui produit une paire (a, b) de particules de spin 1
2 ,

préparée dans l’état |ψ〉 = ϕ(~ra, ~rb)|Σ〉, c’est-à-dire que les variables spatiales et les
variables de spin sont indépendantes. L’état de spin des deux particules est :

|Σ〉 =
1√
2

[
|σaz = +1〉 ⊗ |σbz = +1〉+ |σaz = −1〉 ⊗ |σbz = −1〉

]
(6)

Dans tout le problème, on ne s’intéresse qu’aux mesures de spin. Dans 1’expression
(6), |σau = ±1〉 (en l’occurrence u = z) désignent les états propres de la composante
le long de u du spin de la particule a, de même pour b.

32



8.3. État intriqué de deux spins

a) Montrer que cet état peut également s’écrire :

|Σ〉 =
1√
2

[
|σax = +1〉 ⊗ |σbx = +1〉+ |σax = −1〉 ⊗ |σbx = −1〉

]
(7)

b) La paire de particules (a, b) étant préparée dans l’état de spin (6)-(7), ces particules
sont séparées spatialement (figure 1) sans que l‘état de spin soit affecté (avant
qu’une mesure n’intervienne).

i) Alice mesure d’abord la composante du spin de a, suivant un axe ua, d’angle
θa. Quels sont les résultats de mesure et les probabilités correspondantes dans
les deux cas θa = 0 (axe z) et θa = π/2 (axe x) ?

ii) Justifier qu’après cette mesure, l’état de spin des deux particules est :

Axe Résultat État
z +~/2 |σaz = +1〉 ⊗ |σbz = +1〉
z −~/2 |σaz = −1〉 ⊗ |σbz = −1〉
x +~/2 |σax = +1〉 ⊗ |σbx = +1〉
x −~/2 |σax = −1〉 ⊗ |σbx = −1〉

En déduire qu’on peut désormais ignorer la particule a, pour ce qui concerne
les mesures de spin sur b.

c) Après cette mesure d’Alice, Bernard mesure la composante du spin de b suivant
un axe ub, d’angle θb. Déterminer les résultats de mesure possibles de Bernard et
leurs probabilités, en fonction du résultat d’Alice, dans, les quatre configurations
suivantes

i) θa = 0, θb = 0,

ii) θa = 0, θb = π/2,

iii) θa = π/2, θb = 0,

iv) θa = π/2, θb = π/2,

Dans quel(s) cas la mesure sur a, et, celle sur b donnent-elles avec certitude le
même résultat ?

d) On se place dans la situation θa = 0. On suppose qu’un « espion », situé entre la
source S et Bernard, mesure la composante du spin b suivant un axe ue, d’angle
θe, (figure 2).

i) Quels sont en fonction de θe, et du résultat de mesure d’Alice, les résultats de
mesure de l’espion et leurs probabilités ?

ii) Après cette mesure de l’espion, Bernard mesure le spin de b suivant l’axe défini
par θb = 0. Que trouve-t-il et avec quelle probabi1ité, en fonction du résultat
trouvé par l’espion ?
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Figure 2. – Un espion, situé entre la source S et Bernard, fait une mesure d’une
composante du spin b suivant un axe θc avant que Bernard ne mesure la
composante de ce spin suivant l’axe θb.

iii) Quelle est la probabilité, P (θe) qu’Alice et, Bernard trouvent le même résul-
tat ?

iv) Quelle est la moyenne de P (θe) si l’espion choisit au hasard θe, avec une
probabilité uniforme sur [0, π] ? Quelle est cette moyenne s’il choisit seulement
les deux valeurs θe = 0 et θe = π/2 de façon équirépartie ?

8.4. Contexte physique

La crevette-mante à la propriété remarquable de voir la lumière polarisée li-
néaire ou circulaire Pour plus d’information nous référons à la page wikipedia :
https ://fr.wikipedia.org/wiki/Stomatopoda

8.5. Protocole de codage de messages confidentiels

section non traitée en PC
On souhaite utiliser les résultats qui précédent à la transmission confidentielle d’in-

formation. Alice et Bernard utilisent alors la procédure détaillée dans l’encadré donné
en figure 3. Commenter cette procédure, en s’attachant plus particulièrement à ré-
pondre aux questions suivantes :

a) Comment Alice peut-elle se convaincre de la présence d’un espion ?
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8.5. Protocole de codage de messages confidentiels

1. Alice et Bernard décident d’un choix d’axes x et z qui leur
serviront de direction d’analyse.

2. Alice, qui dispose de la source S, prépare une séquence ordon-
née de N paires de spins 1

2 dans l’état (4) (n : nombre de bits
du message). Elle envoie les spins a à Bernard et garde les spins
b.

3. Alice et Bernard font, pour chacun des spins dont ils disposent,
la mesure de la composante x ou z. Le choix entre x et z
Se fait de manière aléatoire et équiprobable pour chaque spin
et il n’y a pas de corrélation, pour un spin donné, entre la
composante choisie par Alice et celle choisie par Bernard. Ils
stockent chacun l’ensemble de leurs résultats.

4. Bernard sélectionne une partie FN de ses mesures et il commu-
nique publiquement à Alice (par radio, www, etc.) la direction
d’analyse choisie et le résultat obtenu pour chacune des me-
sures de cet ensemble. En pratique, F ∼ 0, 5.

5. Alice compare pour cet ensemble FN ses directions et ses ré-
sultats avec ceux que vient de lui communiquer Bernard. Elle
peut alors détecter la présence éventuelle d’un espion. Si un
espion est repéré, la procédure s’arrête et une recherche “phy-
sique" de l’espion doit avoir lieu. Sinon :

6. Alice annonce publiquement qu’elle est convaincue de ne pas
avoir été écoutée, et, Bernard lui transmet toujours publique-
ment ses directions d’anlyse pour les (1− F )N spins restants.
En revanche, il ne communique pas les résultats correspon-
dants.

7. ...

Figure 3. – Protocole pour la cryptographie quantique.
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8. PC8 : Cryptographie quantique

b) Quelle est la probabilité qu’un espion présent ne soit pas détecté ? On évaluera
numériquement celle probabilité pour FN = 200.

c) L’espion gagne-t-il en “invisibilité" s’il connaît le système d’axes Oxy retenu par
Alice et Bernard pour effectuer leur mesure ?

d) Compléter la phrase manquante en indiquant comment Alice peut envoyer son
message à Bernard, sans utiliser d’autres paires de spins que les N paires déjà
produites et analysées par Bernard et elle-même.

8.6. Le théorème de non-clonage quantique

On pourrait imaginer que l’espion cherche à obtenir une information sur un des
photons émis, en clonant son état. Supposons ainsi qu’il dispose d’un deuxième pho-
ton, placé dans un état |i〉 et que l’interaction de ce photon copie l’état du photon
d’Alice et Bernard sur l’état du photon espion, sans modifier l’état du photon original.

1. Soit U l’opérateur d’évolution des deux photons. On note |σ〉 l’état du photon
intercepté par l’espion. Donner l’expression de U(t)|σ〉 ⊗ |i〉, où t est choisi
postérieur à l’interaction entre les deux photons.

2. Calculer 〈σ′, i|U †(t)U(t)|σ〉 ⊗ |i〉 et en déduire que l’opération décrite ci-dessus
est impossible à réaliser.
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9. PC9 : Molécule de Benzène

Mécanique quantique (PHY 311)
Pierre Vanhove

PC du 24 juin 2015

Lemme : commutation d’opérateurs

On considère deux opérateurs Ĝ et Ĥ qui commutent : ĜĤ = ĤĜ. L’ensemble
{|φn〉} est une base propre de Ĝ et on note gn les valeurs propres correspondantes.
On suppose pour simplifier que ces valeurs propres ne sont pas dégénérées. Montrer
que les |φn〉 sont états propres de Ĥ.

9.1. Un modèle simple pour la molécule de benzène

On considère les états d’un électron dans une molécule hexagonale C6 formée de 6
atomes équidistants. On désigne par |n〉 (n = 1, . . . , 6) les états de l’électron localisés
respectivement au voisinage des atomes n = 1, . . . , 6. On suppose que les états forment
une base orthonormée 〈n|m〉 = δn,m.
L’hamiltonien Ĥ de ce système est défini dans la base {|n〉}, par Ĥ = E0I+ Ŵ , où

I est la matrice identité et Ŵ vaut :

Ŵ = −A
6∑

n=1

(|n+ 1〉〈n|+ |n〉〈n+ 1|) , (1)

avec A > 0. Nous utilisons ici les conditions cycliques |7〉 ≡ |1〉 et |0〉 ≡ |6〉. Nous
allons chercher les états propres |φk〉 (k = 1, . . . , 6) de Ĥ et les valeurs propres cor-
respondantes Ek.

a) Démontrer que pour N entier strictement positif, et q entier positif ou négatif :
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9. PC9 : Molécule de Benzène

N∑

k=1

e2iπkq/N =

{
N si q = `N, ` ∈ Z
0 sinon . (2)

b) Comment peut-on justifier la forme du Hamiltonien Ĥ ?

c) On définit l’opérateur de « rotation » R̂ par R̂ |n〉 = |n+1〉. Montrer que les valeurs
propres de R̂ sont nécessairement dans l’ensemble {λk = eikπ/3, k = 1, . . . , 6}.

d) On note |φk〉 =
6∑

p=1

ck,p|p〉 le vecteur propre (éventuel) de R̂ associé à λk. Écrire

une relation de récurrence pour les coefficients ck,p et déterminer ces coefficients
en normalisant |φk〉.

e) Montrer que les kets |φk〉 sont deux à deux orthogonaux.

f) Écrire l’opérateur de rotation R̂ sous forme matricielle. Montrer que Ĥ et R̂ com-
mutent.

g) En déduire les vecteurs propres de Ĥ et les valeurs propres correspondantes. Dis-
cuter la dégénérescence des niveaux.

h) Un électron est initialement sur l’atome |1〉, c’est-à-dire |ψ(0)〉 = |1〉. Développer
ce vecteur d’état sur la base des états propres de l’hamiltonien.

i) Quelle est la probabilité de trouver l’électron sur l’atome 1 à un instant ultérieur ?
Y a-t-il des instants auxquels on est certain du résultat ? On posera ω = A/~.

j) Comment se répartissent les 6 électrons dans l’état fondamental de la molécule
de benzène, compte tenu du principe de Pauli ? On négligera la répulsion entre
électrons.

9.2. La molécule de cyclooctatétraène

Figure 1. – Configuration pour la molécule de cyclooctatétraène est un dérivé insa-
turé du cyclooctane avec comme formule brute C8H8.

On considère maintenant une chaîne fermée de huit atomes répartis régulièrement
(molécule cyclooctatétraène).
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a) En utilisant une méthode semblable à celle qui précède, donner les niveaux d’éner-
gie d’un électron en mouvement sur cette chaîne. Quelle est la dégénérescence de
ces niveaux ?

b) À l’instant t = 0, l’électron est localisé sur le site n = 1 : |ψ(t = 0)〉 = |1〉.
Développer ce vecteur d’état sur la base des états propres de l’hamiltonien.

c) Calculer la probabilité p1(t) de trouver l’électron sur le site n = 1 à un instant t
ultérieur ; on posera ω = A/~.

d) Existe-t-il un instant t 6= 0 pour lequel p1(t) = 1 ? La propagation d’un électron
sur cette chaîne est-elle périodique ?
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10. Devoir Maison 0 : transformée de
Fourier et relation d’incertitude

Mécanique quantique (PHY 311)
Pierre Vanhove

PC du 22 avril 2015

Ce texte prolonge la PC2 et doit être traité à la maison. Un corrigé sera
distribué en PC3. Vous ne rendez pas de copies.

10.1. Particule libre

On considère une particule libre de fonction d’onde ψ(t, x) et de transformée de
Fourier ψ̃(t, p) selon les notation de la PC2.

a) Écrire l’équation d’évolution dont est solution ψ̃(t, p). En déduire ψ̃(t, p) à l’aide
de ψ̃(0, p).

b) On appelle p0 et ∆p0 respectivement la valeur moyenne et l’écart quadratique
moyen de l’impulsion à l’instant t = 0. Calculer 〈p〉(t) et ∆p(t) à tout instant t.
Interpréter physiquement le résultat obtenu.

c) A l’aide du résultat de la PC2 exprimer 〈x〉(t) en fonction du temps. Comment
ce résultat se compare-t-il à celui obtenu par la méthode de la question 2.3c de la
PC2 ?

Dans toute la suite, on supposera que l’origine de l’axe des x est choisie telle que
la valeur moyenne de la position à l’instant initial soit nulle : 〈x〉(0) = 0.

d) De même, écrire l’expression de 〈x2〉(t) à l’aide de la fonction ψ̃(t, p) et de sa
dérivée par rapport à p, puis montrer que l’on obtient un polynôme du second
degré en t. Pour simplifier la suite des calculs, on supposera que ce polynôme
atteint son extremum en t = 0 et on déterminera le coefficient du terme en t2. En
déduire la variance ∆x(t)2, que l’on exprimera à l’aide de ∆x0 = ∆x(0) et de ∆p0.

e) Donner une valeur approximative de ∆x(t) lorsque t → +∞. Interpréter physi-
quement le résultat obtenu.
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10.2. Oscillateur harmonique

On considère dans cette partie le cas d’un potentiel harmonique V (x) = 1
2mω

2x2

a) Écrire les deux équations dont sont respectivement solutions les fonctions ψ(x, t)
et ψ̃(t, p).

b) En exploitant l’analogie entre les deux équations obtenues à la question précédente,
montrer que

d〈p〉
dt

= mω2

∫ +∞

−∞
ψ̃∗(t, p)

~
i

∂ψ̃(t, p)

∂p
dp (1)

Il sera utile de considérer la variable X = p
mω ainsi que la fonction Φ(t,X) =√

mωψ̃(t,mωX).

c) En déduire une relation entre d〈p〉/dt et 〈x〉. Comment cette relation se compare-
t-elle au résultat obtenu en mécanique classique ?
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11. Premier devoir à la maison

Mécanique quantique (PHY 311)
Pierre Vanhove

donné le 13 mai 2015 - à rendre le 27 mai 2015

1. Courant de probabilité

En électrodynamique classique on définit les densité de charge ρ et de courant
J = ρv, qui obéissent à la relation de conservation de la charge :

∂ρ

∂t
+∇ · J = 0. (1)

a) Par analogie, on définira en mécanique quantique une densité de probabilité ρ et
un courant de probabilité J . Montrer que la densité et le courant de probabilité
obéissent aussi à la relation ci-dessus (relation de conservation de la probabilité) si
on prend pour ρ et J les expressions suivantes, définies pour une fonction d’onde
ψ(r, t) solution de l’équation de Schrödinger pour un potentiel V (r) :

ρ(r, t) = |ψ(r, t)|2 = ψ∗(r, t)ψ(r, t), (2)

J(r, t) = Re

(
ψ∗(r, t)

p̂

m
ψ(r, t)

)

=
~

2im
[ψ∗(r, t)∇ψ(r, t)− ψ(r, t)∇ψ∗(r, t)] . (3)

b) On recherche des solutions de l’équation de Schrödinger sous la forme ψ(r, t) =
ϕ(r)χ(t). Montrer que ϕ(r) et χ(t) vérifient les équations :

i~
dχ

dt
= Eχ(t), (4)

− ~2

2m
4ϕ(r) + V (r)ϕ(r) = Eϕ(r), (5)

avec E constante. Montrer que l’on a ψ(r, t) = ϕ(r)e−iωt et exprimer ω en fonction
de l’énergie E de la particule. On dit alors que ψ(r, t) est une solution station-
naire de l’équation de Schrödinger, et que ϕ(r) est une solution de l’équation de
Schrödinger “indépendante du temps”.

c) Montrer que pour une solution stationnaire de l’équation de Schrödinger la relation
de conservation de la probabilité s’écrit simplement ∇ · J = 0. En déduire que

43



11. Premier devoir à la maison

pour une solution stationnaire à une seule dimension d’espace, la valeur du courant
de probabilité est une constante.

d) On se place maintenant dans un espace à une dimension, et on suppose V (x) = V0

constant. Montrer que pour E > V0 l’équation de Schrödinger admet comme
solution stationnaire :

ψk(t, x) =
(
Aeikx +Be−ikx

)
exp

(
−i
Et

~

)
(6)

et donner la relation entre k, E et les autres données du problème.

e) Calculer l’expression de Jx (composante de J suivant l’axe des x) en fonction de
A et de B (et des autres paramètres du problème) ? Quelle partie de ce courant de
probabilité peut on attribuer à une onde progressive se « déplaçant » dans le sens
des x > 0 ? Dans la suite du problème, on dira qu’une telle onde est incidente ou
transmise selon les cas (à gauche et à droite de la marche ou de la la barrière de
potentiel).

f) La fonction ψk(t, x) est-elle normalisable ? Comment interpréter ce résultat ?

g) On considère deux solutions stationnaires ψk1(t, x) et ψk2(t, x) données respecti-
vement par

ψk1(t, x) =
(
A1eik1x +B1e−ik1x

)
exp

(
−i
E1t

~

)
(7)

ψk2(t, x) =
(
A2eik2x +B2e−ik2x

)
exp

(
−i
E2t

~

)
(8)

La fonction d’onde ψ(t, x) = ψk1(t, x)+ψk2(t, x) est-elle une solution de l’équation
de Schrödinger ? Le courant de probabilité et la densité de probabilité associés à
cette fonction d’onde dépendent il du temps ?

2. Marche de potentiel à une dimension.

On considère le potentiel V (x) en « marche d’escalier » tel que V (x) = 0 si x ≤ 0
et V (x) = V0 ≥ 0 si x > 0 (voir figure 1), et on cherche une solution stationnaire ϕ(x)
de l’équation de Schrödinger pour une particule de masse m et pour une énergie E
telle que 0 < E < V0.

a) Montrer (sans calculer les coefficients A,B,C,D) que ϕ(x) peut se mettre sous la
forme :

ϕI(x) = Aeikx +Be−ikx si x ≤ 0 (9)
ϕII(x) = Ce−qx +De+qx si x > 0 (10)
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2. Marche de potentiel à une dimension.

Figure 1. – Marche de potentiel avec une onde incidente de x = −∞ d’énergie
E < V0.

où q et k sont des coefficients positifs que l’on précisera en fonction de E, V0, m,
a et ~.

b) Quelles conditions de raccordement ϕI(x) et ϕII(x) doivent-elles vérifier si V0 est
fini ?

c) Expliquez pour quelle(s) raison(s) on doit choisir D = 0 dans la solution pour
x > 0. Exprimer ensuite B et C en fonction de A.

d) Le choix D = 0 est il en accord avec l’hypothèse (que l’on fera par la suite) de
ne considèrer des particules incidentes que depuis x = −∞ (et non x = +∞) ? À
quelle partie de la solution ϕI(x) peut correspondre une « onde incidente ». Même
question pour une « onde réfléchie ».

e) Que vaut le coefficient de réflexion R défini comme le rapport des courants de
probabilité des ondes réfléchies et incidentes ?

f) Que vaut le courant de probabilité en x > 0 ? La probabilité de présence de la
particule est-elle nulle dans la région x > 0 ?

g) Calculer le déphasage de l’onde réfléchie par rapport à l’onde incidente.

h) Que deviennent les relations trouvées en c) quand V0 tend vers l’infini ? Les hypo-
thèses de continuité faites en b) restent-elle vérifiées dans ce cas ?

i) On considère maintenant le cas E > V0. Calculer les coefficients de réflexion R et
de transmission T pour des particules incidentes depuis x = −∞, ainsi que R+T .

j) Que deviennent R et T si on pose
n1

n2
=

√
E

E − V0
? Interpréter ce résultat par

analogie avec la réflexion sur un dioptre en optique ?
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3. Demi-tour devant un précipice

Figure 2. – Marche de potentiel avec une onde incidente de x = +∞ d’énergie E >
V0.

On considère maintenant un faisceau monochromatique de particules de masse m
émises par une source située en x = +∞ (de la droite) pour le même potentiel en
marche considéré dans l’exercice précédant (voir figure 2).

a) Calculer le coefficient de réflexion R.

b) Analyser le comportement du facteur de réflexion en fonction de l’énergie des
particules E ≥ V0.

c) Analyser le comportement pour E → V0 par valeur supérieure. Commenter en
comparant avec le comportement de particules classiques.

4. Étalement du paquet d’onde

a) À l’instant t = 0, la particule libre est décrite par un paquet d’onde ψ(x) dont on
ne précisera pas l’expression. On suppose seulement que sa transformée de Fourier
ψ̂(k) est concentrée en k ' k0. Le paquet d’onde évolue librement sur tout l’axe
x.

On note Ĥ = p̂2/(2m) le Hamiltonien du système sans potentiel. Déterminer
l’expression de ψ̂(p, t) à l’instant t à partir de ψ̂(p, 0).

b) On supposera que la fonction d’onde ψ̂(p, t) est concentrée autour de la valeur p0.
En développant l’énergie du système au premier ordre en p

E(p) ' E(p0) + (p− p0)

(
∂E

∂p

)
|p=p0 . (11)
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4. Étalement du paquet d’onde

En exprimant la fonction d’onde ψ(t, x) comme la transformée de Fourier de ψ̂(p, t)
et en utilisant les résultats de la PC2, déduisez en l’expression de ψ(x, t) à l’instant
t à partir de ψ(x, 0). Que déduisez-vous de l’évolution de la fonction d’onde ?

c) Même question que précédemment en poussant le développement jusqu’au second
ordre en p, et en considérant cette fois-ci le cas particulier d’un paquet d’onde
Gaussien discuté en PC2

ψ̂(p, 0) =
1

(πσ2~2)
1
4

e−
(p−p0)2

2σ2~2 . (12)

Quelles conclusions tirez-vous ?
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12. Second devoir à la maison

Mécanique quantique (PHY 311)
Pierre Vanhove

donné le 10 juin 2015 - à rendre le 17 juin 2015

1. Effet tunnel résonnant et contrôle de la transmission
d’un électron à travers une barrière

On considère deux boîtes quantiques que l’on décrit par deux puits semi-infinis
couplés par une barrière tunnel. On s’intéresse au niveau d’énergie le plus élevé de
chaque puits, d’énergie E0 = 0. A l’aide d’électrodes on peut appliquer un potentiel
électrostatique V sur le puits de droite et −V sur le puits de gauche. On note |g〉
et |d〉 les états localisés respectivement dans les puits de gauche et de droite. On
suppose 〈g|d〉 = 0. On appelle A > 0 la constante de couplage tunnel. L’hamiltonien
de couplage s’écrit −A(|g〉〈d| + |d〉〈g|). On place un électron de charge −q (q > 0)
dans le puits de gauche.

a) Écrire la matrice du hamiltonien dans la base (|g〉, |d〉) lorsqu’une tension V est
appliquée.

b) Écrire H en fonction de cos 2θ = qV/
√
q2V 2 +A2 et sin 2θ = −A/

√
q2V 2 +A2.

c) Trouver les énergies propres E+ et E− et les états propres de l’hamiltonien en
fonction de cos θ et sin θ.

d) Tracer les énergies propres en fonction de qV .
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12. Second devoir à la maison

e) Quelle est la probabilité Pd(t) de trouver l’électron dans le puits de droite après
une durée t ?

f) Que vaut la probabilité maximale de passage du puit de gauche vers le puits
de droite et montrer que l’on peut contrôler le passage de l’électron à travers la
barrière.

g) Que vaut Pd(t) pour V = 0 et qV � A.

h) Expliquer comment on peut contrôler le passage de l’électron du puits de gauche
vers celui de droite.

2. États quasi-classique d’un oscillateur harmonique

On considère l’oscillateur harmonique à une dimension, de masse m et de fréquence
Ω de la PC5. On rappelle que le hamiltonien possède des états propres |φn〉, associé
aux énergies propres En = ~Ω(n + 1

2). On introduit les opérateurs â et â+, reliés à

l’opérateur position x̂ par x̂ =
√

~
2mΩ(â + â+). On rappelle finalement que â|φn〉 =

√
n|φn−1〉.

On construit l’état (α est complexe)

|α〉 = e−
|α|2

2

∞∑

n=0

αn√
n!
|φn〉 .

Le but de l’exercice est de montrer que cet état reproduit le mouvement d’oscillation
classique de l’oscillateur harmonique.

a) Montrer que |α〉 est état propre de â avec la valeur propre α. Ce fait implique que
〈α|â+ = 〈α|α∗.

b) On prépare à t = 0 l’état |ψ(0)〉 = |α〉. Calculer l’état |ψ(t)〉 et montrer que
l’évolution revient à remplacer α par α e−iΩt.

c) Calculer 〈ψ(t)|x̂|ψ(t)〉 et montrer qu’il correspond au mouvement classique.

d) Calculer 〈ψ(t)|x̂2|ψ(t)〉 et en déduire l’écart-type ∆x en fonction de ~, m et Ω.
Le comparer à celui de la fonction d’onde de l’état fondamental de l’oscillateur
harmonique vu en PC5.

e) Pourquoi dit-on que l’état |α〉 oscille sans se déformer ? On l’appelle « quasi-
classique ». Pourquoi « quasi » ?
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Deuxième partie .

Corrigés des petites classes et
des devoirs
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13. Corrigé PC1 : Interférences et
probabilités

Mécanique quantique (PHY 311)
Pierre Vanhove

PC du 15 avril 2015

1. Interférences, relation d’incertitude, ondes de matière

1.1. Nature ondulatoire des photons

a) On considère une onde incidente monochromatique cohérente. La source est co-
hérente, c’est-à-dire que l’on peut négliger les effets de retard entre les différents
points des sources. Seul le déphasage après les fentes importe. On reste aussi dans
un voisinage de l’axe (Oz). Pour les fentes d’Young on fait diffuser des fronts d’onde
d’ouverture angulaire α = a

D . On observera des franges d’interférence lorsque
α ≥ αcor soit pour aλ ≥ hD.

Les deux trous diffractent des ondes sphériques donc

E = E0 (cos(ωt− kL1) + cos(ωt− kL2)) (1)

avec

L1 =

√
D2 + (x+

a

2
)2 ' D +

(x+ a
2 )2

2D
+O(1/D2) (2)

L2 =

√
D2 + (x− a

2
)2 ' D +

(x− a
2 )2

2D
+O(1/D2) . (3)

Le déphasage est donc donné par

∆ϕ = k(L1 − L2) ' kxa

D
(4)

L’interfrange est défini comme la variation de x lorsque ϕ varie de 2π donc

∆ϕ = 2π =
k i a

D
=⇒ i =

λD

a
. (5)

b) L’intensité du champ sur l’écran est donné par la valeur moyenne temporelle de
la norme carrée du champ électrique (en fait du vecteur Poynting ~π = ~E × ~B car
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13. Corrigé PC1 : Interférences et probabilités

pour une onde électromagnétique |B| = |E|)

I ∝ 〈|E|2〉t = |E0|2 〈| cos(ωt− kL1) + cos(ωt− kL2)|2〉t . (6)

Cette valeur moyenne est calculée par le détecteur sur des temps longs, Tdétecteur ∼
10−1 s, devant la période typique d’une onde lumineuse Tonde ∼ 10−4 s.

En utilisant que

cos(ωt− kL1) + cos(ωt− kL2) = 2 cos

(
ωt− kL1 + L2

2

)
cos

(
k
L1 − L2

2

)
(7)

et que

〈cos(ωt− x)2〉t =
1

2
(8)

on en déduit que

I ∝ 2|E0|2
(

cos
(πx
i

))2
. (9)

c) La quantité de mouvement des photons incidents est

~pincident = ~~k =
2π~
λ

~ez =
h

λ
~ez . (10)

d) Les impulsions des photons transmis sont données par

~p1 =
h

λ
~e1; ~e1 :=



x+a

2
L1

0
D
L1


 (11)

~p2 =
h

λ
~e2; ~e2 :=



x−a

2
L2

0
D
L2


 . (12)

Bien sûr les vecteur ~e1 et ~e2 sont de norme unité. Donc

p1
x =

h

λ

x+ a
2

L1
et p2

x =
h

λ

x− a
2

L2
(13)

donc
|∆px| := |p1

x − p2
x| =

h

λ

(
x+ a

2

L1
−
x− a

2

L2

)
' h

λ

a

D
(14)

où nous avons utilisé que L1 ' L2 ' D car l’écran est supposé être placé loin des
fentes et que D � x.

e) La relation d’incertitude d’Heisenberg

∆x∆px ≥
~
2

(15)
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2. Loi de désintégration exponentielle

donne que

∆x ≥ λD

4πa
=

i

4π
' 0.0796 i . (16)

Pour connaitre l’impulsion des particules il faut connaitre ∆px,écran � ∆p, et
pour avoir des franges d’interférence il faut avoir ∆xécran � i. On voit donc
que connaitre précisément l’impulsion déduit les franges car on suit la trajectoire
classique de la particule.

1.2. Ondes de matière

f) Pour calculer la longueur d’onde de de Broglie des atomes on utilise les relations
sur l’impulsion

p = mv = ~k =
h

λdB
=⇒ λdB =

h

mv
= 1.03 10−10m = 1.03Å . (17)

La longueur d’onde de de Broglie est environ d’un Ångström.

g) L’interfrange mesurée est i = λdbD
a = 0.824 10−5m.

2. Loi de désintégration exponentielle

a) Par définition la probabilité que la durée de vie soit supérieure à t1 + t2 s’écrit
F (t1 + t2) = P (t > t1 + t2) = P (t > t1 + t2|t > t1)P (t > t1) comme le produit
de la probabilité conditionnelle d’une durée de vie au-delà de l’instant t1 + t2 fois
la probabilité de la durée de vie au delà de l’instant t1. Comme nous avons une
loi sans vieillissement P (t > t1 + t2|t > t1) = P (t > t2). On trouve donc que
F (t1 + t2) = P (t > t1)P (t > t2) = F (t1)F (t2).

b) On doit résoudre l’équation fonctionnelle F (x + y) = F (x)F (y) pour tous x, y ∈
R+. Pour entier naturel n on a que F (n) = F (n − 1)F (1) donc F (n) = F (1)n.
Pour tout nombre rationnel r = p

q ∈ Q, F (p) = F (rq) = F (r)q = F (1)p donc
F (r) = F (1)r. La loi de probabilité est une fonction continue, par densité des
rationnels dans les réels on déduit que F (x) = F (1)x = exp(−x/τ) pour tout
x ∈ R+. Comme la particule n’existe qu’à partir de l’instant t0, on applique ce
résultat à x = t− t0 et donc

F (t) =

{
e−

t−t0
τ t ≥ t0

0 t < t0
. (18)

On remarque le temps caractéristique τ = − log(F (1)) > 0 car la probabilité
satisfait à 0 < F (x) < 1. On vérifie bien sûr la propriété d’absence de mémoire
P (t > t+ t0|t > t0) = P (t > t+ t0)/P (t > t0) = F (t)/F (0) = exp(−t/τ) implique
que le point d’origine importe peu.
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c) Pour une loi de probabilité f(t) la valeur moyenne de la fonction g(t) est donnée
par

〈g(t)〉 :=

∫ +∞

0
g(t) f(t) dt . (19)

On remarque que
∫ +∞
t0

F (t)dt = τ . On calcule donc

〈(t− t0)〉 :=

∫ +∞

t0

(t− t0) e−
t−t0
τ
dt

τ
= τ

∫ +∞

0
x e−xdx = τ . (20)

Pour le calcul de l’écart type on remarque que (en utilisant que T = τ)

〈(∆T )2〉 := 〈(t− t0 − T )2〉 = 〈(t− t0)2〉 − 2τ 〈(t− t0)〉︸ ︷︷ ︸
τ

+τ2 〈1〉︸︷︷︸
1

(21)

= 〈(t− t0)2〉 − τ2 . (22)

Ainsi

〈(∆T )2〉 = −τ2 +

∫ +∞

t0

(t− t0)2 e−
t−t0
τ
dt

τ
= −τ2 + τ2

∫ +∞

0
x2 e−xdx = τ2 . (23)

Donc la dispersion des événements ∆T = τ est donnée par le temps caractéristique
car le processus est sans mémoire.

d) Par définition la probabilité p(t) =
∫ t
t0
w(x)dx et q(t) = 1− p(t) =

∫ +∞
t0

w(x)dx−∫ t
t0
w(x)dx =

∫ +∞
t w(x)dx.

e) La probabilité que la particule se désintègre entre t et t+ dt est donnée par P (t <
X < t + dt) = w(t)dt. Mais cette quantité est la probabilité que la particule a
vécue jusqu’à l’instant t et s’est désintégrée donc P (t < X < t+ dt) = q(t)P (t0 <
X < t0 + dt) mais P (t0 < X < t0 + dt) = w(t0)dt par la propriété d’absence de
mémoire. Ainsi w(t)dt = q(t)w(t0)dt donc w(t) = w(t0)

∫ +∞
t w(x)dx. On résout

cette équation en différentiant w′(t) = −w(t0)w(t) donc w(t) = exp(−(t − t0)/τ)
avec τ = − logw(t0).

f) Si on a N particules identiques indépendantes chacune suivant la loi f(t) alors
le nombre de particule en fonction du temps est donné par N(t) = N f(t) =
N0 exp(−(t − t0)/τ). Le temps de demi-vie est donné par N(δ + t0) = N0/2 soit
δ = τ ln 2.

g) Pour l’iode 〈t〉iode = τ = δ/ ln 2 = 11.57 jours.
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14. Corrigé PC2 : Transformée de
Fourier et relation d’incertitude

Mécanique quantique (PHY 311)
Pierre Vanhove

PC du 22 avril 2015

1. Propriétés générales de la transformation de Fourier

a) Par définition on a

f(ax) =
1√
2π

∫

R
f̃(k) eikaxdx =

1

|a|
√

2π

∫

R
f̃

(
k

a

)
eikxdx , (1)

donc f(ax) est la transformée de Fourier de f̃(k/a)/|a|.

b) On suppose que f̃(k) = f̃∗(k) ∈ R et f̃(−k) = f̃(k) alors

f∗(x) =
1√
2π

∫

R
f̃∗(k) e−ikxdx =

1√
2π

∫

R
f̃(k) e−ikxdx

=
1√
2π

∫

R
f̃(−k) eikxdx = f(x) . (2)

On a aussi que

f(−x) =
1√
2π

∫

R
f̃(k) e−ikxdx =

1√
2π

∫

R
f̃(−k) eikxdx = f(x) . (3)

On en déduit donc que f(x) est réelle et paire.

Si maintenant la transformée de Fourier est réelle f̃∗(k) = f̃(k) et impaire f̃(−k) =
−f̃(k) alors on en déduit que f∗(x) = −f(x) et f(−x) = −f(x) donc f(x) = ih(x)
où h(x) est une fonction réelle impaire.

c) Par intégration par partie on montre que

1√
2π

∫

R
f̃ ′(k) eikxdx = −ix 1√

2π

∫

R
f̃(k) eikxdx+

[
f̃(k)eikx

]+∞

−∞︸ ︷︷ ︸
=0

= −ixf(x) . (4)

Les termes de bords s’annulent car on suppose que la fonction f̃(k) est a dé-
croissance rapide à l’infini (qui est une condition d’existence de la transformée de
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Fourier). Par récurrence on montre aisément que

1√
2π

∫

R
f̃ (n)(k) eikxdx = (−ix)n f(x) . (5)

d) On veut montrer l’identité de Parceval
∫

R
f∗1 (x)f2(x)dx =

1√
2π

∫

R

∫

R
f̃∗1 (k)f2(x)e−ikxdkdx =

∫

R
f̃∗1 (k)f̃2(k)dk . (6)

Où on a utilisé la définition de la transformée de Fourier inverse.

e) La transformée d’un produit de convolution est donnée par

1√
2π

∫

R
f̃3(k)eikxdk =

1

2π

∫

R

∫

R
f̃1(k′)f̃2(k − k′)eikxdkdk′

=
1√
2π

∫

R
f̃1(k′)eikxdk × 1√

2π

∫

R
f̃2(k′)eik

′xdk′

= f1(x)f2(x) . (7)

2. Transformation de Fourier et inégalités de Heisenberg

a) On développe la fonctionnelle I(λ)

I(λ) =

∫

R
|kf̃(k)|2dk+λ

∫

R

(
kf̃(k)

df̃∗(k)

dk
+ kf̃∗(k)

df(k)

dk

)
dk+λ2

∫

R

∣∣∣∣∣
df̃(k)

dk

∣∣∣∣∣

2

dk .

(8)
Par définition (∆k)2 =

∫
R |kf̃(k)|2dk. Également (∆x)2 =

∫
R |ixf(x)|2dx mais par

le théorème de Plancherel nous avons que (∆x)2 =
∫
R |df̃(k)/dk|2 dk. Finalement

∫

R

(
kf̃(k)

df̃∗(k)

dk
+ kf̃∗(k)

df(k)

dk

)
dk =

[
k|f̃(k)|2

]+∞

−∞
−
∫

R
|f̃(k)|2 dk = −1 .

(9)
On remarque que cette fonctionelle est un polynôme de degré deux en λ ne prenant
que des valeurs positives

I(λ) = (∆k)2 + λ2 (∆x)2 − λ ≥ 0 pour tout λ , (10)

donc le discriminant de cette équation du second ordre est négatif ou nul

(−1)2 − 4(∆x∆k)2 ≤ 0⇐⇒ ∆x∆k ≥ 1

2
. (11)

b) Si ∆x∆k = 1/2 on a une racine double λ0 = 1/(2(∆x)2) = 2(∆k)2 telle que
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2. Transformation de Fourier et inégalités de Heisenberg

I(λ0) = 0. Donc

kf̃(k) + λ0
df̃(k)

dk
= 0 (12)

Ce qui s’intègre en une Gaussienne que l’on prend centrée (symétrique) par rapport
à l’origine

f̃(k) = f̃0 e
− k2

2λ0 . (13)

La transformée de Fourier d’une Gaussienne est une Gaussienne

f(x) =
1√
2π

∫

R
f̃(k) eikxdk =

f̃0√
2π

∫

R
e
ikx− k2

2λ0 dk

= =
f̃0√
2π

e−
λ0x

2

2

∫

R
e
− k̃2

2λ0 dk̃ =
√
λ0f̃0 e

−λ0x
2

2 . (14)

On a fait le changement de variable suivant

ikx− k2

2λ0
= − 1

2λ0
(k − ixλ0)− λ0x

2

2
(15)

et l’on a posé k̃ = k − ixλ0. La condition de normalisation de la fonction f̃(k)
implique que

1 =

∫

R
|f̃(k)|2dk = |f̃0|2

∫

R
e
− k

2

λ0 dk =
√
πλ0|f̃0|2 . (16)

Comme on peut choisir f̃0 réel positif (une phase constante n’est pas physiquement
observable), cette équation détermine la normalisation.

c) Pour la réciproque, on calcule

(∆k)2 =

∫

R
|kf̃(k)|2 dk = f̃2

0

∫

R
k2 e

− k
2

λ0 dk =

√
π f̃2

0 λ
3
2
0

2
. (17)

En utilisant la condition de normalisation de la fonction calculée dans la question
précédente on trouve

(∆k)2 =
λ0

2
. (18)

Pour calculer (∆x)2 on a

(∆x)2 =

∫

R
|xf(x)|2dx =

∫

R

∣∣∣∣∣
df̃(k)

dk

∣∣∣∣∣

2

dk =
1

λ2
0

f̃2
0

∫

R
k2 e

− k
2

λ0 dx =
(∆k)2

λ2
0

. (19)

On trouve donc

∆x =
1√
2λ0

; ∆k =

√
λ0

2
; ∆x∆k =

1

2
. (20)

59



14. Corrigé PC2 : Transformée de Fourier et relation d’incertitude

d) Comme l’impulsion est donnée par p = ~k on en déduit que ∆x∆p ≥ ~/2.

3. Évolution du paquet d’onde libre

a)

ψ̃(t, p) =
1√
2π~

∫ +∞

−∞
ψ(t, x) e−i

px
~ dx . (21)

La densité de probabilité est |ψ̃(t, p)|2.
L’équation de Schrödinger s’écrit

Eψ̃(t, p) = Ĥψ̃(t, p) . (22)

Comme nous avons une particule libre

Ĥψ̃(t, p) =
p2

2m
ψ̃(t, p) (23)

donc

E =
p2

2m
. (24)

b) Nous avons

〈x〉(t) =

∫ +∞

−∞
x|ψ(t, x)|2 dx , (25)

et

〈p〉(t) =

∫ +∞

−∞
p|ψ̃(t, p)|2 dp =

~
i

∫ +∞

−∞

∂ψ(t, x)

∂x
ψ∗(t, x) dx , (26)

où nous avons utilisé la propriété d’isométrie et que la transformée Fourier de
pψ̃(t, p) est −i~∂xψ(t, x). (Ici nous travaillons avec p = ~k d’où un facteur ~).

c)

d〈x〉(t)
dt

=

∫ +∞

−∞
x
d|ψ(t, x)|2

dt
dx

=

∫ +∞

−∞
x (
dψ(t, x)

dt
ψ∗(t, x) +

dψ∗(t, x)

dt
ψ(t, x)) dx . (27)

Comme pour une particule libre

i~
dψ(t, x)

dt
= − ~2

2m

∂2ψ(t, x)

∂x2
, −i~dψ

∗(t, x)

dt
= − ~2

2m

∂2ψ∗(t, x)

∂x2
. (28)

donc

d〈x〉(t)
dt

=
i~
2m

∫ +∞

−∞
x (
∂2ψ(t, x)

∂x2
ψ∗(t, x)− ∂2ψ∗(t, x)

∂x2
ψ(t, x)) dx
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3. Évolution du paquet d’onde libre

= − i~
2m

∫ +∞

−∞
(
∂ψ(t, x)

∂x
ψ∗(t, x)− ∂ψ∗(t, x)

∂x
ψ(t, x)) dx

= − i~
m

∫ +∞

−∞

∂ψ(t, x)

∂x
ψ∗(t, x) dx . (29)

où nous avons fait des intégrations par parties. On reconnait dans la dernière ligne
le définition de 〈p〉(t) donc

d〈x〉(t)
dt

=
〈p〉(t)
m

(30)

On remarquera que d〈x〉(t)/dt est donné par l’intégrale du courant de probabilité
étudié dans le premier devoir à la maison.

d) Pour une particule dans un potentiel V (x) le même manipulations s’appliquent
car le potentiel est réel et l’on trouve la même relation d〈x〉(t)/dt = 〈p〉(t)/m.
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15. Corrigé PC3 : Barrière de
potentiels et effet tunnel

Mécanique quantique (PHY 311)
Pierre Vanhove

PC du 6 mai 2015

2. Conditions de raccordement à l’interface d’un potentiel
discontinu.

a) On considère une solution stationnaire de l’équation de Schrödinger (à une dimen-
sion) de la forme

ψ(x, t) = ϕ(x)e−iωt . (1)

L’équation de Schrödinger donne que

i~
∂ψ(x, t)

∂t
= ~ω ψ(x, t) = E ψ(x, t) (2)

donc E = ~ω.

b) La fonction d’onde est alors continue (ce qui est une condition nécessaire pour la
continuité de la densité de probabilité) et la dérivée est continue. La continuité de
la dérivée implique la continuité du courant de probabilité. Pour voir cela il suffit
d’intégrer l’équation de Schrödinger de part et d’autre de la discontinuité

E

∫ ε

−ε
ψ(x) = − ~2

2m

∫ ε

−ε

∂2ψ(x)

∂x2
+

∫ ε

−ε
V (x)ψ(x)

= − ~2

2m

(
ψ′(ε)− ψ′(−ε)

)
+

∫ ε

−ε
V (x)ψ(x) . (3)

Comme la fonction d’onde est continue, et que le potentiel est continu les intégrales
tendent vers 0 lorsque ε→ 0. Donc limε→0(ψ′(ε)− ψ′(−ε)) = 0.

c) Dans ce cas ϕ et ϕ′ sont continues, que l’on peut voir en intégrant l’équation de
Schrödinger de part et d’autre d’une discontinuité. Mais ϕ′′ est discontinue, car si
le potentiel varie l’énergie cinétique doit varier. À énergie constante cela implique
une discontinuité dans la dérivée seconde.

d) Si le potentiel est une fonction delta de Dirac V (x) = Kδ(x) alors ϕ′ n’est plus
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15. Corrigé PC3 : Barrière de potentiels et effet tunnel

continue car dans ce cas

lim
ε→0

∫ ε

−ε
V (x)ψ(x) = Kψ(0). (4)

donc limε→0(ψ′(ε)− ψ′(−ε)) = −2mK
~2 ψ(0). Mais ϕ est toujours continue.

3. Barrière de potentiel à une dimension - Effet tunnel.

a) Dans chacune des régions la fonction d’onde ψ(x, t) satisfait l’équation de Schrö-
dinger d’une particule libre dans un potentiel constant ou nul

Hψ(x, t) = − ~2

2m

∂2ψ(x, t)

∂x2
= Eψ(x, t) pour x < 0 et x > a (5)

Hψ(x, t) = − ~2

2m

∂2ψ(x, t)

∂x2
+ V0ψ(x, t) = Eψ(x, t) pour 0 < x < a .(6)

Pour une solution stationnaire donnée par une onde plane ψ(x, t) = exp(ikx −
iEt/~) on a donc

E =
~2k2

2m
pour x < 0 et x > a (7)

E =
~2k2

2m
+ V0 pour 0 < x < a . (8)

Soit

k =

√
2mE

~
pour x < 0 et x > a (9)

ik = q =

√
2m(V0 − E)

~
pour 0 < x < a . (10)

On a donc dans chacune des régions en posant ψ(x, t) = ϕ(x) exp(−iEt/~)

ϕI(x) = Aeikx +Be−ikx si x < 0
ϕII(x) = Ce−qx +De+qx si 0 < x < a

ϕIII(x) = F eikx +Ge−ikx si x > a

(11)

b) On a six contantes inconnues. On a deux fois deux équations de continuité (pour
la fonction d’onde et sa dérivée). Il nous reste donc 6 − 4 = 2 inconnues. En
choisissant la normalisation de ψ(t, x) on peut toujours poser A = 1 ce qui nous
laisse une inconnue.

c) Si on veut une particule venant de −∞, il faut poser G = 0. Car ce coefficient
correspond à une particule venant de la droite x = +∞.

d) Par définition JI = |A|2, JR = |B|2 et JT = |F |2 donc R =
∣∣B
A

∣∣2 et T =
∣∣F
A

∣∣2.
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3. Barrière de potentiel à une dimension - Effet tunnel.

e) La continuité de ϕ implique les relations suivantes

A+B = C +D (x = 0) (12)
Ce−qa +Deqa = Feika (x = a) . (13)

La continuité de ϕ′ implique

ik(A−B) = q(−C +D) (x = 0) (14)
q(−Ce−qa +Deqa) = ikFeika (x = a) . (15)

La solution de ce système de quatre équations à cinq inconnues est donnée par

4ik

q
A = Feika

(
e−qa

(
1 + i

k

q

)2

− eqa
(

1− ik
q

)2
)

(16)

−4ik

q
B = Feika

∣∣∣∣1 + i
k

q

∣∣∣∣
2 (
e−qa − eqa

)
(17)

2Ce−qa = Feika
(

1− ik
q

)
(18)

2Deqa = Feika
(

1 + i
k

q

)
. (19)

Ainsi

F =
4ik

q

e−ika

e−qa
(

1 + ikq

)2
− eqa

(
1− ikq

)2 A . (20)

On en déduit ainsi que le coefficient de transmission est donné par

T =
16k2

q2

1∣∣∣∣e−qa
(

1 + ikq

)2
− eqa

(
1− ikq

)2
∣∣∣∣
2 (21)

=
(2qk)2

(2qk)2 + (q2 + k2)2 sinh2(qa)
. (22)

De l’expression pour B on déduit le facteur de réflexion

R =
4 sinh(aq)2

∣∣∣∣e−qa
(

1 + ikq

)2
− eqa

(
1− ikq

)2
∣∣∣∣
2 (23)

=
sinh2(qa)(q2 + k2)2

(2qk)2 + (q2 + k2)2 sinh2(qa)
. (24)

On remarquera que R+ T = 1.
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15. Corrigé PC3 : Barrière de potentiels et effet tunnel

f) Dans la limite qa� 1 on trouve que

T ' 16k2q2 e−2qa

(k2 + q2)2
' 16

E(V0 − E)

V 2
0

e−2qa . (25)

g) Application numérique :

i) Avec les valeurs données on trouve pour l’électron avec q =
√

2m(V0 − E)/~ =√
2mc2/~c = 5.12 109m−1, donc qa ' 0.5. Comme q = k on trouve que

T = 0.777.

ii) Pour le proton de même énergie, comme il est près de 2000 fois plus lourd
que l’électron alors q = 2.196 1011m−1 et comme q = k on trouve que T '
3.4 10−19 et R ' 1. Le proton est quasiment totalement réfléchi par la barrière.

4. Application à la marche de potentiel à une dimension.

On prend la limite a→∞ avec k fixe dans les solutions à l’exercice précédant. On
trouve donc que T → 0 et R = 1− T → 1.
Dans la région x > 0 le profil de la fonction d’onde est

ϕII(x) = Ce−qx +Deqx . (26)

Pour être normalisable la fonction d’onde doit rester finie pour x→ +∞, donc D = 0.
La fonction d’onde pénètre dans la barrière sur une épaisseur limitée de l’ordre de
1/q = ~/

√
2m(V0 − E).

5. Résonance de diffusion

a) Si V0 < E alors q = iq′ et nous avons une onde plane se propageant dans la région
0 < x < a.

b) On trouve en posant q = iq′ que

T =
4q′2k2

4k2q′2 + (k2 − q′2)2 sin(q′a)2
=

4(E − V0)E

4(E − V0)E + V 2
0 sin(q′a)2

. (27)

c) Si sin(q′a)2 = 0 alors T = 1 et la transmission est totale. Ceci arrive lorsque
q′a = nπ avec n ∈ Z. Soit pour

√
2m(E − V0)a/~ = nπ donc E = V0 + (~nπ)2

2ma2 .

d) En appliquant les formules de l’exercice précédant avec q = iq′ on trouve que

R =
(k2 − q′2)2 sin(q′a)2

4k2q′2 + (k2 − q′2)2 sin(q′a)2
= 1− T . (28)
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16. Corrigé PC4 : Mouvement de
particules quantiques à une
dimensions : états liés

Mécanique quantique (PHY 311)
Pierre Vanhove

PC du 13 mai 2015

1. Évolution temporelle

On considère la fonction d’onde ψ(t, x) =
∑

n cn(t)ϕn(x) à laquelle on applique
l’équation de Schrödinger

i~
∂ψ(t, x)

∂t
=

∑

n

i~ c′n(t)ϕn(x)

= Ĥψ(t, x) =
∑

n

En cn(t)ϕn(x) . (1)

Comme les ϕn composent une base orthonormée alors pour chaque n on a

i~c′n(t) = Encn(t)⇐⇒ cn(t) = cn(0) e−i
Ent
~ . (2)

2. Invariance par parité

a) On considère Ĥψ(r) = Eψ(r) avec Ĥ = − ~2

2m∆ +V (r). Pour ψ(−r) l’Hamiltonien
est Ĥ ′ = − ~2

2m∆ + V (−r) puisque V (r) = V (−r) alors Ĥ ′ = Ĥ donc ψ(−r) a la
même énergie que ψ(r).

b) On écrit ψ(r) = ψ+(r)+ψ−(r) avec ψ±(r) = (ψ(r)±ψ(−r))/2. Comme Ĥψ(±r) =
Eψ(±r) alors ψ±(r) sont aussi état propres de l’hamiltonien avec la même énergie.
Si ψ+ et ψ− sont non nulles la dégénérescence est deux. C’est-à-dire que l’espace
vectoriel des solutions est de dimensions deux

c) Si la dégénérescence est de un, c’est-à-dire que la dimension de l’espace vectoriel
des solutions est de un. Il faut alors que soit ψ+ est nulle et la fonction d’onde est
impaire, soit ψ− est nulle et la fonction d’onde est paire.

d) Dans le cours 3 les états du puits carré infini ont été donnés. Il faut résoudre
l’équation − ~2

2mψ
′′
n(x) = Enψn(x) pour x ∈ [0, L] avec pour conditions aux limites
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ψn(0) = ψn(L) = 0. Les fonctions d’ondes sont ψn(x) =
√

2
L sin

(
nπ
L x
)
. Le système

est symétrique par rapport au milieu du puits x = L/2. Donc les fonctions d’ondes
satisfont à la propriété de parité ψn(L − x) = (−1)n−1ψn(x). Ainsi ψ− est nulle
pour n impair et ψ+ nulle pour n paire.

3. États isotropes de l’atome d’hydrogène

Cet exercice traite de l’atome d’hydrogène selon la méthode suivie par Niels Bohr il
y a 100 ans. La représentation des atomes avec des électrons sur des orbites circulaires
bien qu’utile à Niels Bohr ne correspond pas à la réalité car les orbitales atomiques
sont des nuages d’électrons.

1 électron

1 proton

Figure 1. – À gauche la représentation de l’atome de Niels Bohr, où l’électron évo-
lue sur une orbite circulaire “classique”. À droite une représentation des
orbitales atomiques montrant la configuration de la fonction d’onde de
l’électron.

On pourra consulter l’exercice 5, chapitre 4 du livre de J.-L. Basdevant et J. Dali-
bard (corrigé en page 470).

a) b) Avec ψ(x) = Cx exp(−x/a0) dans l’Hamiltonien Ĥ = −~2/(2m) d2

dx2 − α~c
x

donne

Ĥψ(x) =

(
− ~2

2a2
0m

+

(
~
a0m

− αc
)

~
x

)
ψ(x) = E ψ(x) (3)

Puisque que l’énergie est constante, il faut assurer l’annulation de la dépendance
en x. Ce qui donne

a0 =
~

mcα
=

~2ε0
πmq2

= 0.53Å . (4)

C’est le rayon de Bohr, et l’énergie est donnée par

− E1 =
~2

2ma2
0

= 13.6 eV (5)

c) La constante de normalisation est donnée par
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3. États isotropes de l’atome d’hydrogène

1 =

∫ ∞

0
|ψ(x)|2dx = C2a3

0

∫ ∞

0
x2e−2xdx = C2a

3
0

4
(6)

d) On calcule

〈
1

x

〉
=

∫ ∞

0

1

x
|ψ(x)|2dx = C2

∫ ∞

0
x e
− 2x
a0 dx =

1

a0
(7)

Donc la valeur moyenne du potentiel est

Vc =

〈
−α~c

x

〉
= −α~c

a0
= − ~2

ma2
0

= 2E1 (8)

On peut vérifier que la valeur moyenne de l’énergie cinétique est donnée par

Ec =

〈
p2

2m

〉
=

∫ ∞

0
ψ(x)(H − V (x))ψ∗(x)dx = E1 − 2E1 = −E1 (9)

On trouve donc que 2Ec + Vc = 0 qui est une version du théorème du Viriel pour
les systèmes de mécanique quantique.

Ce théorème, énoncé par Rudolf Clausius en 1870, dit que pour un système en
équilibre dynamique l’énergie cinétique est égale à la moitié de l’opposé de l’énergie
potentielle : 2Ec+Ep = 0. Le résultat obtenu dans cet exercice peut être démontré
en toute généralité en mécanique quantique.

e) En posant x = a0ξ le Hamiltonien devient

Ĥ = − ~2

2ma2
0

(
d2

dξ2
+

2

ξ

)
. (10)

En remplaçant ψn(ξ) = exp(−ξλn)yn(ξ) dans l’équation de Schrödinger Ĥψn(ξ) =
Enψn(ξ) on obtient :

d2yn
dξ2

− 2λn
dyn
dξ

+
2

ξ
yn = yn

(
λ2
n −

En
E1

)
= 0. (11)

Où l’on a utilisé que λ2
n = En/E1.

f) En injectant le développement en série de yn(ξ) dans l’équation différentielle (11)
on obtient

∑

q≥0

cq
(
(q + s)(q + s− 1)ξq+s−2 − 2(λn(q + s)− 1)ξq+s−1

)
= 0 (12)

c0s(s− 1)ξs−2 +
∑

q≥0

ξq+s−1 (cq+1(q + s)(q + s+ 1)− 2cq(λn(q + s)− 1)) = 0 .
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Ce qui implique le système d’équations

c0s(s− 1) = 0 (13)
cq+1(q + s)(q + s+ 1) = 2cq(λn(q + s)− 1) .

Comme c0 6= 0 et comme yn doit tendre vers 0 quand ξ tend vers 0, on a forcément
s = 1.

Ce qui donne pour les autres termes

q(q + 1)cq = 2(qλn − 1)cq−1 . (14)

Si le second terme de cette équation ne s’annule jamais, la série est vraiment
infinie avec cq/cq−1 ∼ 2λn/q quand q → ∞. Or exp(2ξλn) =

∑∞
q=0 dqξ

q avec
dq = (2λn)q/q!, donc dq/dq−1 = 2λn/q. Donc yn(ξ) se comporte comme exp(2ξλn)
quand ξ → ∞. Dans ce cas, ψn(ξ) se comporte comme exp(ξλn) quand ξ → ∞,
ce qui ne peut pas convenir. Il y a donc forcément un entier q = n pour lequel le
second membre de (14) s’annule et donc λn = 1/n, ce qui donne En = E1/n

2. Il y
a donc un nombre infini de niveaux d’énergie.

n correspond à l’ordre de l’orbitale atomique. L’expression de la fonction d’onde
radiale sphérique est

ψn(x) = L(−1)
n

(
xn

2a0

)
e
− x
na0 , (15)

avec L(α)
n (x) = x−αex

n!
dn

dxn (e−xxn+a) les polynômes de Laguerre.

Nous avons résolu l’équation de Schrödinger pour le nombre angulaire l = 0 cor-
respondant à une fonction d’onde sphérique.
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17. Corrigé PC5 : L’oscillateur
harmonique

Mécanique quantique (PHY 311)
Pierre Vanhove

PC du 27 mai 2015

1. Notations de Dirac et relations de commutation dans
l’espace des états

a) On vérifie aisément que pour λ ∈ C

〈χ|(|φ1〉+ λ|φ2〉) = χ(|φ1〉+ λ|φ2〉) = 〈χ|φ1〉+ λ〈χ|φ2〉 (1)

et par conjugaison complexe que

(〈φ1|+λ〈φ2|)|χ〉 = (〈χ|(|φ1〉+λ|φ2〉))∗ = (〈χ|φ1〉+λ〈χ|φ2〉)∗ = 〈φ1|χ〉+λ∗〈φ2|χ〉
(2)

Bien sûr ces propriétés sont évidentes si l’on utilise la représentation intégrale
〈χ|φ〉 =

∫
R(χ(x))∗φ(x) dx.

b) Si λ ∈ C alors au ket |λψ〉 alors pour tout bra 〈χ| on a 〈χ|λψ〉 =∫
R(χ(x))∗λψ(x)dx = λ

∫
R(χ(x))∗ψ(x)dx = λ〈χ|ψ〉. Donc |λψ〉 = λ |ψ〉. En utili-

sant que (|λψ〉)† = 〈λψ| et que (|λψ〉)† = λ∗〈ψ| on trouve donc que 〈λψ| = λ∗ 〈ψ|.

c) On considère |φ〉 = Â|ψ〉. Comme pour tout bra 〈χ| on a 〈χ|φ〉 = (〈φ|χ〉)∗ et que
〈χ|φ〉 = 〈χ|Â|ψ〉 on en déduit que 〈φ| = 〈ψ|Â†.

d) On applique le résultat précédant à |φ〉 = Â|ψ〉 et |ψ〉 = B̂|χ〉 pour tout |χ〉. Alors
〈φ| = 〈χ|(Â · B̂)† mais c’est aussi 〈ψ|Â† = 〈χ|B̂† · Â†.

e) i) Puisque 〈χ|x̂|ψ〉 =
∫
R χ(x)∗xψ(x) dx avec x ∈ R clairement x̂ est hermi-

tien. Pour p̂ on raisonne de manière équivalente dans l’espace des p où l’on a
〈χ|p̂|ψ〉 =

∫
R χ̃(p)∗pψ̃(p) dp avec p ∈ R.

ii) On calcule 〈χ| [x̂, p̂] |ψ〉 = 〈χ|x̂ · p̂|ψ〉 − 〈χ|p̂ · x̂|ψ〉 =
∫
R χ(x)∗(x~

i ∂x −
~
i ∂xx)ψ(x) dx = i~

∫
R χ(x)∗ψ(x) dx. Vrai pour tous bra et ket donc vrai

comme opérateur.
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17. Corrigé PC5 : L’oscillateur harmonique

2. L’oscillateur harmonique

a) Comme Ĥ0φ(x) = Eφ(x) alors

− ~2

2m

∂2φ(x)

∂x2
+
mΩ2

2
φ(x) = Eφ(x) (3)

b) L’analyse dimensionnelle indique que
[
p2

2m

]
= [mΩ2x2] (4)

Comme [p] = [~/x] on en déduit que
[√

mΩ

~
x

]
= 1 (5)

donc X̂ et sans dimension. Puisque

[
p√
mΩ~

]
=

[√
~
mΩ

1

x

]
= 1 (6)

on a que P̂ est sans dimension.
L’Hamiltonien réduit Ĥ = Ĥ0/(~Ω) est simplement donné par

Ĥ =
1

2
(P̂ 2 + X̂2) . (7)

Considérons le commutateur

[X̂P̂ − P̂ X̂] =
1

~
[x̂p̂− p̂x̂] =

i~
~

= i (8)

c) On a (
1√
2

(X̂ + iP̂ )

)†
=

1√
2

(X̂† − P̂ †) = â† (9)

où nous avons utilisé que X̂ et P̂ sont hermitiens comme montré dans l’exercice 1.
On montre que

[â, â†] =
1

2
[X̂ + iP̂ , X̂ − iP̂ ] = −i [X̂, P̂ ]− [P̂ , X̂]

2
= −i[X̂, P̂ ] = 1 (10)

On a aussi que

[N̂ , â] = [â†â, â] = â†â2 − ââ†â = [â†, â]â = −â (11)
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2. L’oscillateur harmonique

et
[N̂ , â†] = [â†â, â†] = â†ââ† − â†â†â = â†[â, â†] = â† (12)

On considère maintenant

N̂ = â†â =
1

2
(X̂ − iP̂ )(X̂ + iP̂ ) =

X̂2 + P̂ 2

2
+
i

2
[X̂, P̂ ] = Ĥ − 1

2
(13)

où l’on a utilisé que [X̂, P̂ ] = i.

d) i) On considère
|â|φν〉|2 = 〈φν |â†â|φν〉 = ν〈φν |φν〉 = ν (14)

où l’on a utilisé que (â|φν〉)† = 〈φν |â† et φν est normée 〈φν |φν〉 = 1. Donc
ν ≥ 0. Si ν = 0 la norme est nulle donc â|φν〉 = 0.

ii) La norme est donnée par

|â†|φν〉|2 = 〈φν |ââ†|φν〉 = 〈φν |(1 + â†â)|φν〉 = (1 + ν) 〈φν |φν〉 = (1 + ν) (15)

iii) En utilisant la relation de commutation entre a et N̂ on a

N̂ â|φν〉 = (âN̂ − â)|φν〉 = (ν − 1)â|φν〉 (16)

iv) On raisonne par l’absurde et par récurrence. Si on a un |φν〉 avec les propriétés
ci-dessus alors |φν−1〉 satisfait les même propriétés avec la valeur propre ν−1.
Si ν n’est pas entier il existe un entier n0 tel que |φν−n0〉 aura la valeur propre
ν − n0 < 0 pour N̂ . Mais on a démontré que les valeurs propre de l’opérateur
nombre N̂ sont positives ou nulles. Donc ν est un entier naturel n0.

e) La relation de commutation entre a† et N̂ donne

N̂ â†|φn〉 = (â†N̂ + â†)|φn〉 = (n+ 1)|φn〉 (17)

On voit donc que tout n ≥ 0 est autorisé comme valeur propre de l’opérateur
nombre N̂ .

L’opérateur â s’interprète comme un opérateur de destruction de quanta et l’opé-
rateur â† comme un créateur de quanta.

f) L’état fondamental est l’état à l’énergie la plus basse. Comme l’énergie (réduite)
est donnée par n+ 1/2 avec n ≥ 0, l’état fondamental est caractérisé par n = 0.

Comme n = 0 on a alors que â|φ0〉 = 0.
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17. Corrigé PC5 : L’oscillateur harmonique

Si 〈χ| est un bra arbitraire alors

0 = 〈χ|â|φ0〉 =

∫ +∞

−∞
χ∗(x)âφ0(x)dx (18)

=

∫ +∞

−∞
χ∗(x)

1√
2

(
X̂ + iP̂

)
φ0(x)dx (19)

=

∫ +∞

−∞
χ∗(x)

1√
2

(√
mΩ

~
x+ i

1√
mΩ~

∂

∂x

)
φ0(x)dx (20)

Comme cette intégral est nulle pour tout χ alors
(√

mΩ

~
x+ i

1√
mΩ~

∂

∂x

)
φ0(x) = 0 (21)

on en déduit que φ0(x) satisfait l’équation différentielle

φ′0(x) +
mΩ

~
xφ0(x) = 0 (22)

La solution est la gaussienne

φ0(x) = λ e−
mΩ
2~ x

2
(23)

La constante λ est fixée par la condition de normalisation

1 =

∫ +∞

−∞
|φ0(x)|2dx =⇒ λ =

(
mΩ

π~

) 1
4

(24)

On remarquera qu’il n’y a qu’une seule solution. Donc le fondamental n’est pas
dégénéré.

i) On a montré que N̂(â|φn〉) = (n− 1) (â|φn〉) mais on a aussi que N̂ |φn−1〉 =
(n− 1)|φn−1〉. Les niveaux étant non dégénérés (voir plus bas pour des préci-
sions) on en déduit que â|φn〉 = λ|φn−1〉.

〈φn|N̂ |φn〉 = n〈φn|φn〉 (25)
= |â|φn〉|2 = |λ|2〈φn−1|φn−1〉 (26)

donc |λ|2 = n donc λ =
√
n.

On procède de même pour â†|φn〉 pour en déduire que â†|φn〉 =
√
n+ 1|φn+1〉.

Remarque sur la dégénérescence des niveaux d’énergie. On a vu que l’action
de n opérateur â sur un état |φn〉 donne |φ0〉. On a vu que le fondamental
n’est pas dégénéré donc les niveaux excités ne peuvent pas être dégénérées.
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2. L’oscillateur harmonique

ii) Comme â†|φn〉 =
√
n+ 1|φn+1〉 alors

|φn〉 =
1√
n!

(â†)n|φ0〉 (27)

ou en représentation x

φn(x) =
1√

2nn!

(√
mΩ

~
x− i√

mΩ~
∂

∂x

)n
φ0(x) (28)

iii) On peut aisément inverser les équation exprimant â et â† en fonction de X̂ et
P̂ pour obtenir

X̂ =
1√
2

(
â† + â

)
; P̂ =

i√
2

(
â† − â

)
. (29)

On remarque que

X̂|φn〉 =
1√
2

(√
n+ 1|φn+1〉+

√
n|φn−1〉

)
(30)

et
P̂ |φn〉 =

i√
2

(√
n+ 1|φn+1〉 −

√
n|φn−1〉

)
(31)

On a aussi la relation d’orthogonalité 〈φn|φn−1〉 = 0. Donc On a alors que

〈φn|X̂|φn〉 =
1√
2

(√
n+ 1〈φn|φn+1〉+

√
n〈φn|φn−1〉

)
= 0 (32)

ce qui montre que la fonction d’onde est centrée en zéro. De même la valeur
moyenne de P̂ est nulle. On a que

〈φn|X̂2|φn〉 = (〈φn|X̂)(X̂|φn〉) = n+
1

2
(33)

ainsi que

〈φn|P̂ 2|φn〉 = (〈φn|P̂ )(P̂ |φn〉) = n+
1

2
(34)

Donc dans l’état |φn〉
∆X = ∆P = n+

1

2
(35)

et en revenant aux opérateurs x̂ et p̂

∆x∆p = ~(n+
1

2
) ≥ ~

2
(36)

Seul le fondamental, pour lequel n = 0, sature l’inégalité d’Heisenberg.
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18. Corrigé PC6 : Expérience de Stern
et Gerlach

Mécanique quantique (PHY 311)
Pierre Vanhove

PC du 3 juin 2015

1. Théorème d’Ehrenfest

a) On utilise

i~
d〈Â〉
dt

=

(
i~
d〈ψ|
dt

)
Â|ψ〉+ 〈ψ|Â

(
i~
d|ψ〉
dt

)
(1)

Comme
i~
d|ψ〉
dt

= Ĥ|ψ〉; −i~d〈ψ|
dt

= 〈ψ|Ĥ (2)

On a utilisé que le Hamiltonien est hermitien Ĥ† = Ĥ. On en déduit que

i~
d〈Â〉
dt

= −〈ψ|ĤÂ|ψ〉+ 〈ψ|ÂĤ|ψ〉 = 〈ψ|[Â, Ĥ]|ψ〉 (3)

On peut aussi établir cette relation en utilisant la représentation des fonction
d’ondes ψ(t, x), selon

i~
d〈Â〉
dt

=

∫

R3

i~
d

dt
(ψ∗(t, x)Âψ(t, x)) d3x

=

∫

R3

(
i~
dψ∗(t, x)

dt
Âψ(t, x) + i~ψ∗(t, x)Â

dψ(t, x)

dt

)
d3x

=

∫

R3

ψ∗(t, x)
(
−ĤÂ+ Â Ĥ

)
ψ(t, x) d3x . (4)

b) Pour une particule de masse m dans un potentiel V (x) le Hamitonien est donné
par Ĥ = P̂ 2

2m + V̂ (X), donc

i~
d〈X̂〉
dt

= 〈[X̂, Ĥ]〉 =
1

2m
〈[X̂, P̂ 2]〉 =

1

m
〈[X̂, P̂ ]P̂ 〉 =

i~
m
〈P̂ 〉 . (5)

où l’on a utilisé que [X̂, P̂ ] = i~. Donc

d〈X̂〉
dt

=
1

m
〈P̂ 〉 . (6)
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18. Corrigé PC6 : Expérience de Stern et Gerlach

De même on a

i~
d〈P̂ 〉
dt

= 〈[P̂ , Ĥ]〉 = 〈[P̂ , V̂ (X)]〉 = −i~ 〈∇̂xV̂ (X)〉 . (7)

où l’on a utilisé que P̂ = −i~∇̂x pour un mouvement à une dimension. Donc

d〈P̂ 〉
dt

= −〈∇̂xV̂ (X)〉 . (8)

c) On a clairement que τ E = ∆a/v E ≥ 1/2|〈ψ|[Â, Ĥ]|ψ〉| ~|〈ψ|[Â, Ĥ]|ψ〉|−1 = ~/2.
Le temps τ correspond au temps caractéristique d’évolution du système.

2. Moment cinétique

2.1. Description classique : précession de Larmor

a) Le moment magnétique de l’électron ~µ = − e
2m ~r ∧ ~p = γ ~L où γ = −e/(2m) et

~L = ~r ∧ ~p est le moment cinétique

b) Un dipôle magnétique soumis à un champ magnétique ~B subit la force ~F = ~∇(~µ ·
~B) = ~µ · ~∇ ~B. Puisque le champ ~B satisfait l’équation de Maxwell ~∇ · ~B = 0 la
force est donc nulle.
On ne peut pas avoir de champs magnétique non constant uniquement selon la
direction ~ez car l’équation de Maxwell ~∇ · ~B = ∂xBx + ∂yBy + ∂zBz + ∂zBz = 0

n’est pas satisfaite. On peut considérer un champ magnétique ~B = Bz~ez + Bx~ex
de sorte à ce que ∂xBx + ∂zBz = 0. Il faut également que Bx � Bz pour ne pas
affecter le nouvement de l’atome selon la direction Ox.

c) Dans ce cas les particules sont soumise à la force ~F = µz∂zBz ~ez. On s’attend
à observer une ligne continue d’extension déterminée par la largueur du faisceau
incident.

2.2. Description quantique

d) Avec l’expression pour le vecteur ~u = (sin θ cosϕ, sin θ sinϕ, cos θ) alors

~µ~u = µ0

(
cos θ sin θ e−iϕ

sin θ eiϕ − cos θ

)
. (9)

On remarque que µ̂2
~u = I est la matrice identité. On en déduit que les valeurs

propres de ~µ~u sont −µ0 et µ0 avec multiplicité une. Les vecteurs propres sont

|+〉~u = e−i
ϕ
2 cos

θ

2
|+〉+ ei

ϕ
2 sin

θ

2
|−〉; |−〉~u = −e−i

ϕ
2 sin

θ

2
|+〉+ ei

ϕ
2 cos

θ

2
|−〉 .
(10)

78



2. Moment cinétique

e) Les états propres de µx sont obtenus en prenant θ = π/2 et ϕ = 0, soit
|±〉x = (|+〉±|−〉)/

√
2, donc si le système est dans l’état |+〉, puisque |〈+|+〉x|2 =

|〈+|−〉x|2 = 1
2 les deux valeurs de spin selon (Ox) sont trouvées avec une proba-

bilité de 50%.

f) On mesure alors µ̂y, les états propres de cet opérateur sont obtenus en prenant
θ = π/2 et $ = π/2 soit |+〉y = −e

iπ
4 (|+〉x + i|−〉x)/

√
2 et |−〉y = e

iπ
4 (|+〉x +

i|−〉x)/
√

2. Encore une fois, puisque |y〈εy|εx〉x|2 = 1
2 pour tout εy = ±1 et εx = ±1,

on trouve les deux valeurs ±1
2 du spin selon (Oy) quelque soit le résultat de la

mesure du spin selon (Ox).

g) Le théorème d’Ehrenfest pour chaque composante de l’opérateur µ̂

i~
d〈µ̂z〉
dt

= 〈[µ̂z, Ĥ]〉 = 0 . (11)

car le champs B est selon l’axe (Oz). Pour les autres composantes

i~
d〈µ̂x〉
dt

= 〈[µ̂x, Ĥ]〉 = −B0 〈[µ̂x, µ̂z]〉 = 2iB0 µ0〈µ̂y〉 , (12)

car [µ̂x, µ̂z] = −2iµ0 µ̂y. Également on a

i~
d〈µ̂y〉
dt

= 〈[µ̂y, Ĥ]〉 = −B0 〈[µ̂y, µ̂z]〉 = −2iB0 µ0〈µ̂x〉 , (13)

car [µ̂y, µ̂z] = 2iµ0 µ̂x. On peut donc réécrire ces équations sous la forme vectorielle

d〈~µ〉
dt

= −2µ0

~
~B × 〈~µ〉 . (14)

Ce qui correspond à l’équation du mouvement classique

d~µ

dt
= −γ0

~B × ~µ . (15)

h) i) L’équation de Schrödinger i~d|ψ(t)〉
dt = Ĥ|ψ(t)〉 implique que

i~ (c′+(t)|+〉+ c′−(t)|−〉) = −B0µ0 (c+(t)|+〉 − c−(t)|−〉) (16)

donc
c+(t) = c+(0) ei

B0µ0t
~ ; c−(t) = c−(0) e−i

B0µ0t
~ . (17)

ii) À l’instant la fonction d’onde prend la forme

|ψ(t)〉 = c+(0)ei
B0µ0t

~ |+〉+ c−(0)e−i
B0µ0t

~ |−〉 (18)

Comme la fonction d’onde est normalisée c+(0)2 + c−(0)2 = 1 on a donc
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l’identification avec la solution |+〉~u donnée dans (10)

ϕ(t) =
2B0µ0

~
t; c+(0) = cos

θ(t)

2
; c−(0) = sin

θ(t)

2
. (19)

iii) La solution correspond à un spin tournant à vitesse constante dans le plan
équatorial orthogonal à Oz, le système se comporte comme de la lumière
polarisée circulairement.
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19. Corrigé PC7 : Dynamique d’un
système à deux niveaux

Mécanique quantique (PHY 311)
Pierre Vanhove

PC du 10 juin 2015

1. Oscillation de Rabi

On introduit les matrices de Pauli déjà rencontrées en PC6

σ̂x :=

(
0 1
1 0

)
; σ̂y :=

(
0 −i
i 0

)
; σ̂z :=

(
1 0
0 −1

)
(1)

a) Ĥ0 est visiblement égal à

Ĥ0 =
~ω0

2

(
0 1
0 −1

)
=

~ω0

2
σ̂z (2)

et le potentiel V̂ (t) est donné par la matrice

V̂ (t) =
~ω1

2

(
0 eiωt

e−iωt 0

)
=

~ω1

2
(cos(ωt) σ̂x − sin(ωt)σ̂y) . (3)

On constate donc que 2V̂ (t)/(~ω1) est la transformation de σ̂x part une rotation
d’angle −ωt autour de l’axe (Oz)

cos(ωt) σ̂x − sin(ωt)σ̂y = R̂(t) σ̂x R̂
†(t);

R̂(t) := e−i
ωt
2
σ̂z =

(
e−i

ω t
2 0

0 ei
ω t
2

)
. (4)

Comme [Ĥ0, R̂(t)] = 0 car Ĥ0 ne dépend que de σ̂z et que R̂ R̂† = I, on peut donc
écrire

Ĥ(t) = R̂(t) (Ĥ0 +
~ω1

2
σ̂x) R̂†(t) . (5)

Donc nous obtenons le Hamiltonien indépendent du temps

ˆ̃
H1 :=

~ω0

2
σ̂z +

~ω1

2
σ̂x =

~
2

(
ω0 ω1

ω1 −ω0

)
. (6)
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b) On remarque que si |ψ(t)〉 = R(t) |χ(t)〉 alors l’équation de Schrödinger

i~
d|ψ〉
dt

= Ĥ |ψ〉 (7)

implique que |χ〉 satisfait l’équation de Schrödinger

i~
d|χ〉
dt

=

(
R(t)†ĤR(t)− i~R(t)†

dR(t)

dt

)
|χ〉 . (8)

c) Si |ψ(t)〉 = Û(t)|ψ(0)〉 en injectant dans l’équation de Schrödinger on obtient

i~
dÛ(t)

dt
= Ĥ(t)Û(t) . (9)

d) Si Ĥ est indépendant du temps on intègre cette équation différentielle directement

Û(t) = Û(0) exp(−iĤ
~
t) (10)

par définition à l’instant t = 0 on a Û(0) = I l’identité.

e) Pour le système à deux niveaux on a le Hamiltonien effectif

Ĥeff := R̂(t)†ĤR̂(t)− i~R̂(t)†
dR̂(t)

et
. (11)

avec pour R̂(t) = exp(−iωtσ̂z/2). On trouve alors que

Ĥeff =
~
2

((ω0 − ω)σ̂z + ω1σ̂x) . (12)

f) On introduit maintenant l’opérateur d’évolution U(t) tel que |χ(t)〉 =
ˆ̃
U(t)|χ(0)〉.

On déduit de l’équation de Schrödinger Montrer que ˆ̃
U(t) satisfait l’équation de

Schrödinger

i~
d

ˆ̃
U(t)

dt
= Ĥeff(t)

ˆ̃
U(t) . (13)

Comme Ĥeff est indépendant du temps car

Ĥeff :=
~
2

((ω0 − ω)σ̂z + ω1σ̂x) (14)

l’opérateur d’évolution est donné simple en intégrant l’équation différentielle sous
forme matricielle

ˆ̃
U(t) = exp

(
−iĤefft

~

)
. (15)
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1. Oscillation de Rabi

avec R(t) = exp(−iωtσ̂z/2)
ˆ̃
U(t).

On a utilisé que σ̂2
y = I donc

ei
θ
2
σ̂y =

∑

n≥0

1

n!

(
i
θ

2
σ̂y

)n

=
∑

n≥0

1

(2n)!

(
i
θ

2

)2n

+
∑

n≥0

1

(2n+ 1)!

(
i
θ

2

)2n+1

σ̂y

= cos
θ

2
I + i sin

θ

2
σ̂y . (16)

et que
[σ̂x, σ̂y] = 2iσ̂z; [σ̂z, σ̂x] = 2iσ̂y; [σ̂y, σ̂z] = 2iσ̂x . (17)

Afin de calculer l’exponentielle on diagonalise ˆ̃
H selon

H̃ =
~Ω

2

(
ω0 − ω

Ω
σ̂z +

ω1

Ω
σ̂x

)
=

~Ω

2
(cos θσ̂z + sin θσ̂x) (18)

avec Ω2 = (ω0 − ω)2 + ω2
1 et cos θ := (ω − ω0)/Ω et sin θ = ω1/Ω. On reconnait

l’action d’une rotation d’angle θ/2 selon l’axe (Oy) sur σ̂z donc

H̃ =
~Ω

2
e−i

θ
2
σ̂y σ̂z e

i θ
2
σ̂y (19)

Comme [σ̂y, σ̂z] = 2iσ̂x nous avons le résultat voulu. Maintenant l’exponentielle
est facilement obtenue avec le résultat

ˆ̃
U(t) = e−i

θ
2
σ̂y e−i

Ωt
2
σ̂z ei

θ
2
σ̂y . (20)

L’opérateur d’évolution est donné par

U(t) = ei
ωt
2
σ̂ze−i

θ
2
σ̂y e−i

Ωt
2
σ̂z ei

θ
2
σ̂y (21)

g) Il suffit d’expliciter le produit des exponentielles et d’utiliser la formule consé-
quence que σ̂2

u = I
eiασ̂u = cosα I + i sinα σ̂u . (22)

On en déduit donc

U(t) = ei
ωt
2
σ̂z
(

cos
Ωt

2
I + i sin

Ωt

2
(cos θσ̂z + sin θσ̂x)

)
. (23)

h) L’amplitude de transition |1〉 → |2〉 s’écrit

A12(t) = 〈2|U(t)|1〉
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19. Corrigé PC7 : Dynamique d’un système à deux niveaux

= 〈2|ei
ωt
2
σ̂z
(

cos
Ωt

2
|1〉+ i sin

Ωt

2
(cos θ|1〉+ sin θ|2〉)

)

= i sin θ sin
Ωt

2
e−i

ωt
2 . (24)

D’où

P12(t) = |〈2|1〉|2 = sin2 θ sin2 ω̃t =
ω2

1

Ω2
sin2

(
Ω t

2

)
(25)

i) Pour ω � ω0 (excitations de basse fréquence) alors Ω2 ' ω2
0 + ω2

1

P12(t) ' ω2
1

ω2
0 + ω2

1

sin2

(√
ω2

0 + ω2
1 t

2

)
(26)

Dans le cas courant où ω1 � ω0 alors P12(t) ' ω2
1

ω2
0

sin2(ω0t/2) qui décrit
une oscillation à la pulsation de Bohr ω0 avec une très faible amplitude. Si
ω1 � ω0, qui correspond au cas où les deux niveaux atomiques sont presque
dégénérés à l’échelle de ω1 alors P12(t) ' sin2(ωt/2). L’oscillation est maxi-
male à une fréquence caractéristique du couplage avec le champs extérieur.
C’est une oscillation du type de Rabi

ii) Si ω = ω0 nous sommes sur une résonance. Alors

P12(t) =

(
sin

ω1t

2

)2

. (27)

Le fait remarquable est que l’oscillation à résonance ne se produit nullement
à la fréquence propre du système ω0 mais à celle mesurant le couplage avec le
champ extérieur.

iii) ω � ω0 on a une excitation de haute fréquence. Dans ce cas

P12(t) ' ω2
1

ω2 + ω2
1

sin2

(√
ω2 + ω2

1 t

2

)
. (28)

Si ω1 � ω alors il s’agit d’une oscillation forcée de faible amplitude

P12(t) ' ω2
1

ω2
sin2 ωt

2
. (29)
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8. Corrigé PC8 : Cryptographie
quantique

Mécanique quantique (PHY 311)
Pierre Vanhove

PC du 18 juin 2014

1. États de spin 1
2

a) Un calcul direct donne

Ŝ~u :=
~
2

(
cos θ

(
1 0
0 −1

)
+ sin θ

(
0 1
1 0

))
=

~
2

(
cos θ sin θ
sin θ − cos θ

)
. (1)

b) On remarque que Ŝ2
u = ~2

4 I, donc les valeurs propres sont ±~
2 . Et elles ne peuvent

pas être dégénérées sinon l’opérateur serait proportionnel à l’opérateur identité
±~/2 I.

c) Les états propres sont

|σu = +1〉 = cos
θ

2
|σz = +1〉+ sin

θ

2
|σz = −1〉 (2)

|σu = −1〉 = − sin
θ

2
|σz = +1〉+ cos

θ

2
|σz = −1〉 (3)

On remarque que ces états sont normés car 〈σu = +1|σu = +1〉 = 〈σu = −1|σu =
−1〉 = 1. Si la mesure a donné ±~

2 le système se trouve dans l’état propre |σu =
±1〉.

d) Par définition p±u = |〈σu = ±1|σz = +1〉|2. Les probabilités sont donc p+
u =

cos2(θ/2) et p−u = sin2(θ/2). On peut trouver les valeurs +~
2 et −~

2 avec la proba-
bilité cos2 θ

2 et sin2 θ
2 respectivement.

e) i) On veut calculer la probabilité de commencer dans la configuration de spin
|σz = +1〉 et terminer dans la même configuration après une mesure du spin
selon la direction u. On a les deux cas suivants :

1) |σz = +1〉 → |σu = +1〉 → |σz = +1〉 de probabilité P(a) = cos2(θ/2) ×
cos2(θ/2) = cos4(θ/2),

2) |σz = +1〉 → |σu = −1〉 → |σz = +1〉 de probabilité P(b) = sin2(θ/2) ×
sin2(θ/2) = sin4(θ/2).
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8. Corrigé PC8 : Cryptographie quantique

ii) La probabilité totale cherchée est P++ = cos4(θ/2)+sin4(θ/2) = 1
2 (1+cos2 θ).

iii) En fait on trouve le même résultat parce que par symétrie P−− = P++. En
revanche P+− = P−+ = 1

2 sin2 θ. On vérifie bien que P++ + P+− = 1.

2. État intriqué de deux spins

a) La relation entre les états |σax = ±1〉 et |σaz = ±1〉 sont reliés par une rotation (de
même pour b) selon

|σax = +1〉 =
1√
2

(|σaz = +1〉+ |σaz = −1〉)

|σax = −1〉 =
1√
2

(−|σaz = +1〉+ |σaz = −1〉) . (4)

Ce changement de base s’obtient facilement en remarquant de l’axe Ox correspond
au vecteur caractérisé par les angles ϕ = 0 et θ = π/2 sur la sphère de Bloch.
L’expression donnée ci-dessus est obtenue à partir des résultats de la PC6. On
vérifie aisément que

|σax = +1〉 ⊗ |σbx = +1〉+ |σax = −1〉 ⊗ |σbx = −1〉
=

1

2
(|σaz = +1〉+ |σaz = −1〉)⊗ (|σbz = +1〉+ |σbz = −1〉)

+
1

2
(−|σaz = +1〉+ |σaz = −1〉)⊗ (−|σbz = +1〉+ |σbz = −1〉)

= |σaz = +1〉 ⊗ |σbz = +1〉+ |σaz = −1〉 ⊗ |σbz = −1〉 (5)

b) i) On utilise les résultats de l’exercice 2. Après la mesure on peut trouver les
valeurs ±~/2 mesurées sur les axes Ox ou Oz avec les probabilités 1

2 indépen-
damment de la valeur de θa.

ii) Si on mesure le spin de a selon l’axe Oz on utilise l’état |Σ〉 donné par

|Σ〉 =
1√
2

(
|σaz = +1〉 ⊗ |σbz = +1〉+ |σaz = −1〉 ⊗ |σbz = −1〉

)
(6)

car cet état est écrit par rapport aux états propres de Sz pour a. Ainsi pour
un mesure du spin selon Oz, l’état se trouve projeté

+
~
2

: |σaz = +1〉 ⊗ |σbz = +1〉

−~
2

: |σaz = −1〉 ⊗ |σbz = −1〉 . (7)

Pour une mesure du spin de a selon l’axe Ox on utilise alors l’état

|Σ〉 =
1√
2

(
|σax = +1〉 ⊗ |σbx = +1〉+ |σax = −1〉 ⊗ |σbx = −1〉

)
(8)
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2. État intriqué de deux spins

et après mesure le système se trouve dans l’état propre

+
~
2

: |σax = +1〉 ⊗ |σbx = +1〉

−~
2

: |σax = −1〉 ⊗ |σbx = −1〉 . (9)

c) i) θa = 0, θb = 0 : mesure +~
2 avec probabilité 1 et −~

2 avec probabilité 0
ii) θa = 0, θb = π/2 : mesure ±~

2 chacune avec une probabilité 1
2

iii) θa = π/2, θb = 0 : mesure ±~
2 chacune avec une probabilité 1

2

iv) θa = π/2, θb = π/2 : mesure +~
2 avec probabilité 1 et −~

2 avec probabilité 0
Les mesure donne avec certitude le même résultat lorsque le spin est mesuré selon
le même axe pour a et b.

d) i) Si Alice a mesuré ~/2 le système est dans l’état |σaz = +1〉 ⊗ |σbz = +1〉.
Comme |σbz = +1〉 = cos(θe/2)|σez = +1〉 − sin(θe/2)|σez = −1〉, l’espion
peut trouver les valeurs ~/2 avec la probabilité (cos(θe/2))2 et −~/2 avec la
probabilité (sin(θe/2))2. Après la mesure de l’espion le système est dans l’état
|σaz = +1〉 ⊗ |σez = ±1〉 selon la valeur trouvée par l’espion.

Si Alice a mesuré −~/2 le système est dans l’état |σaz = −1〉 ⊗ |σbz = −1〉.
Comme |σbz = −1〉 = sin(θe/2)|σez = +1〉 + cos(θe/2)|σez = −1〉, l’espion
peut trouver les valeurs ~/2 avec la probabilité (sin(θe/2))2 et −~/2 avec la
probabilité (cos(θe/2))2. Après la mesure de l’espion le système est dans l’état
|σaz = −1〉 ⊗ |σez = ±1〉 selon la valeur trouvée par l’espion.

ii) Si Alice a mesuré +~/2. En utilisant maintenant que |σez = +1〉 =
cos(θe/2)|σbz = +1〉 + sin(θe/2)|σbz = −1〉 et |σez = −1〉 = − sin(θe/2)|σbz =
+1〉 + cos(θe/2)|σbz = −1〉, alors Bernard mesurera la valeur +~

2 avec la pro-
babilité cos2 θe

2 cos2 θe
2 et la valeur −~

2 avec la probabilité cos2 θe
2 sin2 θe

2 si
l’espion a mesure la valeur +~

2 . Si l’espion a mesuré la valeur −~
2 les proba-

bilité de Bernard sont sin2 θe
2 sin2 θe

2 pour la valeur +~
2 et sin2 θe

2 cos2 θe
2 pour

la valeur −~
2 .

Si Alice a mesuré −~/2. Alors Bernard mesurera la valeur +~
2 avec la probabi-

lité cos2 θe
2 sin2 θe

2 et la valeur −~
2 avec la probabilité sin2 θe

2 sin2 θe
2 si l’espion

a mesure la valeur +~
2 . Si l’espion a mesuré la valeur −~

2 les probabilité de
Bernard sont cos2 θe

2 sin2 θe
2 pour la valeur +~

2 et cos2 θe
2 cos2 θe

2 pour la valeur
−~

2 .
iii) La probabilité qu’Alice et Bernard trouvent le même résultat +~/2 est

P (θe) = cos4 θe
2

+ sin4 θe
2

=
1

2

(
1 + cos2 θe

)
. (10)

La probabilité de trouver le même résultat −~/2 est le même par symétrie du
problème.
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8. Corrigé PC8 : Cryptographie quantique

iv) Pour un choix d’angle uniforme sur [0, π] la probabilité moyenne est

P̄e =
1

π

∫ π

0
P (θe) dθe =

3

4
. (11)

v) Pour seulement le choix θe = 0 et θe = π/2 on trouve le même résultat.
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9. Corrigé PC9 : Molécule de Benzène

Mécanique quantique (PHY 311)
Pierre Vanhove

PC du 24 juin 2015

Lemme : commutation d’opérateurs

Il suffit d’écrire que Ĝ(Ĥ|φn〉) = ĤĜ|φn〉 = gnĤ|φn〉 donc Ĥ|φn〉 est un état propre
de Ĝ. Comme les états sont non dégénérés on en déduit que Ĥ|φn〉 = λn|φn〉.

1. Un modèle simple pour la molécule de benzène

a) si q = `N avec ` ∈ Z alors

N∑

k=1

e
2iπkq
N =

N∑

k=1

1 = N (1)

sinon
N∑

k=1

e
2iπkq
N = e

2iπq
N

1− e
2iπNq
N

1− e
2iπq
N

= e
2iπq
N

1− e2iπq

1− e
2iπq
N

= 0 (2)

b) L’hamiltonien est donnée par la transition de l’électron entre les sites de plus
proche voisins par effet tunnel. On vérifie par exemple que si l’électron est sur le
site 2 donc dans l’état |2〉, le potentiel tunnel Ŵ donne que l’électron peut sauter
sur le site 1 ou 3 Ŵ |2〉 = −A(|1〉+ |3〉). Cela coûte l’énergie −A.

c) Clairement pour tout |n〉 on a que R̂6|n〉 = |n + 6〉 = |n〉 où nous avons utilisé
la périodicité modulo 6. Donc R̂6 = I. Les valeurs propres sont donc les racines
sixième de l’unité λ6

k = 1, soit λk = eiπk/3 avec 1 ≤ k ≤ 6.

d) En utilisant que R̂|φk〉 = λk|φk〉 et la décomposition sur la base |φk〉 =∑6
p=1 ck,p|p〉 on en déduit que ck,p = λ7−pck,1. Avec la condition de normalisa-

tion 〈φk|φk〉 =
∑6

p=1 |ck,p|2 = 6 |ck,1|2 = 1 nous déduisons que

|φk〉 =
1√
6

6∑

p=1

λ7−p
k |p〉 . (3)
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9. Corrigé PC9 : Molécule de Benzène

e) On vérifie que

〈φk|φk′〉 =


 1√

6

6∑

p=1

(λ∗k)
7−p〈p|




 1√

6

6∑

p′=1

(λk′)
7−p′ |p′〉




=
1

6

6∑

p=1

6∑

p′=1

(λ∗k)
7−p(λk′)

7−p′〈p|p′〉 (4)

comme 〈p|p′〉 = 0 si p 6= p′ and 1 si p = p′ alors

〈φk|φk′〉 =
1

6

6∑

p=1

(λ∗kλk′)
7−p′ (5)

qui s’annule en utilisant le résultat de la question a).

Un autre approche est la suivante. On calcule 〈φk|R̂|φk′〉 de deux façons différentes.
L’une en faisant agir R̂ sur |φk′〉, ce qui donne

〈φk|R̂|φk′〉 = λk′〈φk|φk′〉 (6)

et l’autre en faisant agir R̂ sur le bra 〈φk|. Pour cela il faut remarquer que (cf la
PC5) que

〈φk|R̂ = (R̂†|φk〉)† (7)

maintenant

R̂† =

(
6∑

n=1

|n+ 1〉〈n|

)†
=

6∑

n=1

|n〉〈n+ 1| = R̂−1 (8)

donc
〈φk|R̂ = (λ−1

k |φk〉)
† = (λ−1

k )∗〈φk| = λk〈φk| (9)

car les λk sont de module 1, ie λkλ∗k = 1. Ainsi on trouve que

〈φk|R̂|φk′〉 = λk′〈φk|φk′〉 = λk〈φk|φk′〉 (10)

si k 6= k′ alors λk 6= λk′ d’où 〈φk|φk′〉 = 0.

f) L’opérateur R̂ est donné par R̂ =
∑

n=1 |n + 1〉〈n|, on remarque que R̂−1 =

R̂† =
∑6

n=1 |n〉〈n + 1|. Donc Ĥ = E0I − A(R̂ + R̂−1) ce qui permet déduire que
R̂Ĥ = ĤR̂. On remarquera que I =

∑6
n=1 |n〉〈n|.

g) D’après le lemme on en déduit que les |φk〉 sont états propres d’énergie Ek de
l’hamiltonien. Donnés par

Ĥ|φk〉 = (E0 − 2A cos(
πk

3
))|φk〉 (11)
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2. La molécule de cyclooctatétraène

Ce qui donne que les niveau d’énergie par ordre croissant et avec leur multiplicité

E6 = E0− 2A; E2 = E4 = E0−A; E1 = E5 = E0 +A; E3 = E0 + 2A (12)

h) Il faut développer |1〉 sur les |φk〉 qui sont des état propres de l’Hamiltonien

|φ(0)〉 = |1〉 =
1√
6

6∑

k=1

|φk〉 (13)

donc l’évolution temporelle est donnée par

|φ(t)〉 = |1〉 =
1√
6

6∑

k=1

e−
iEkt

~ |φk〉 (14)

i) On calcule |〈1|φ(t)〉|2 et on cherche si il existe un instant t > 0 pour lequel cette
quantité vaut 1. On trouve que

1 = |〈1|φ(t)〉|2 =
4

36
(cos(2ωt) + 2 cos(ωt))2 (15)

où l’on a posé ω = A/~. Cette équation a pour solutions

ωt = 2πn; n ∈ Z . (16)

j) On répartit les 6 électrons en plaçant 2 électrons par niveaux en commençant par
les niveaux de plus basse énergie. On a donc 2 électrons sur les niveaux E6, E2 et
E4.

Figure 1. – Niveaux d’énergie du Benzène

2. La molécule de cyclooctatétraène

Cet exercice nous avons maintenant une symétrie d’ordre 8.
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9. Corrigé PC9 : Molécule de Benzène

a) L’opérateur de rotation satisfait maintenant R̂8 = I donc les valeurs propres sont
des racines huitième de l’unité λ8 = 1, ie λk = exp(iπk/4) avec 1 ≤ k ≤ 8.

Les niveaux d’énergie sont donnés par Ek = E0 − 2A cos(kπ/4) ce qui donne par
ordre croissant

E8 = E0 − 2A, E1 = E7 = E0 −
√

2A, E2 = E6 = E0,
E3 = E5 = E0 +

√
2A, E4 = E0 + 2A (17)

b) Comme dans l’exercice précédant

|ψ(t)〉 =
1√
8

8∑

k=1

e−i
Ekt

~ |φk〉 (18)

c) La question du retour de l’électron a la position 1 devient alors

1 = |〈1|φ(t)〉|2 =
1

16
(1 + 2 cos(

√
2ωt) + cos(2ωt))2 (19)

La présence du
√

2 fait que cette équation n’a pas de solution et la propagation
de l’électron n’est pas périodique.

Figure 2. – Niveaux d’énergie du cyclooctatétraène
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10. Corrigé devoir maison 0 :
transformée de Fourier et relation
d’incertitude

Mécanique quantique (PHY 311)
Pierre Vanhove

PC du 22 avril 2015

Les corrections sont en italiques

1. Particule libre

On considère une particule libre de fonction d’onde ψ(t, x) et de transformée de
Fourier ψ̃(t, p) selon les notation de la PC2.

a) Écrire l’équation d’évolution dont est solution ψ̃(t, p). En déduire ψ̃(t, p) à l’aide
de ψ̃(0, p).

La transformée de Fourier inverse de l’équation de Schrödinger s’écrit

i~
∂ψ̃(t, p)

∂t
=

p2

2m
ψ̃(t, p) , (1)

d’où l’on déduit

ψ̃(t, p) = ψ̃(0, p) exp

(
−i p

2

2m~
t

)
. (2)

Comme l’énergie de la particule libre est E = p2/(2m) on trouve l’évolution tem-
porelle naturelle ψ̃(t, p) = ψ̃(0, p) exp(−iEt).

b) On appelle p0 et ∆p0 respectivement la valeur moyenne et l’écart quadratique
moyen de l’impulsion à l’instant t = 0. Calculer 〈p〉(t) et ∆p(t) à tout instant t.
Interpréter physiquement le résultat obtenu.

Le module de la fonction ψ̃(t, p) étant indépendant du temps, il en va de même
de la valeur moyenne de toute fonction de p. Donc 〈p〉(t) = p0 et ∆p(t) = ∆p0.
On retrouve là le fait que l’impulsion d’une particule libre se conserve (principe
d’inertie), résultat également valable pour toute fonction de l’impulsion.

c) A l’aide du résultat de la PC2 exprimer 〈x〉(t) en fonction du temps. Comment
ce résultat se compare-t-il à celui obtenu par la méthode de la question 2.3c de la
PC2 ?
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10. Corrigé devoir maison 0 : transformée de Fourier et relation d’incertitude

D’après le résultat de la PC2, on a

〈x〉(t) =

∫ +∞

−∞
ψ̃∗(t, p)i~

∂ψ̃(t, p)

∂p
dp (3)

où l’on a utilisé la propriété d’isométrie de la transformée de Fourier et que la
transformée de Fourier de xψ(t, x) est i~∂ψ̃(t, p)/∂p. Or, comme on a

∂ψ̃(t, p)

∂p
=
∂ψ̃(0, p)

∂p
exp

(
−i p

2

2m~
t

)
− i p t

m~
ψ̃(t, p) (4)

d’où l’on déduit

〈x〉(t) =

∫ +∞

−∞
ψ̃∗(p, 0)i~

∂ψ̃

∂p
(p, 0)dp+ t

∫ +∞

−∞

p

m
|ψ̃(t, p)|2dp (5)

soit
〈x〉(t) = 〈x〉(0) +

p0

m
t (6)

La position moyenne de la particule obéit à une variation linéaire, en accord avec
le principe d’inertie (impulsion constante). Dans la suite, on utilisera simplement

〈x〉(t) =
p0

m
t (7)

Dans toute la suite, on supposera que l’origine de l’axe des x est choisie telle que
la valeur moyenne de la position à l’instant initial soit nulle : 〈x〉(0) = 0.

d) De même, écrire l’expression de 〈x2〉(t) à l’aide de la fonction ψ̃(t, p) et de sa
dérivée par rapport à p, puis montrer que l’on obtient un polynôme du second
degré en t. Pour simplifier la suite des calculs, on supposera que ce polynôme
atteint son extremum en t = 0 et on déterminera le coefficient du terme en t2. En
déduire la variance ∆x(t)2, que l’on exprimera à l’aide de ∆x0 = ∆x(0) et de ∆p0.

La transformée de Fourier inverse de xψ(x, t) étant i~∂ψ̃∂p , on a d’après Parseval-
Plancherel la relation

〈x2〉(t) =

∫ +∞

−∞

∣∣∣∣∣i~
∂ψ̃(t, p)

∂p

∣∣∣∣∣

2

dp (8)

A l’aide de l’expression de ∂ψ̃
∂p obtenue en (4) précédente, on en déduit que 〈x2〉(t)

est un polynome de degré 2 en t

〈x2〉(t) = t2
∫ +∞

−∞

p2

m2
|ψ̃(t, p)|2dp+ 2t

∫ +∞

−∞
<e

(
p

m
ψ̃(t, p)

∂ψ̃∗(0, p)

∂p

)
dp
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2. Oscillateur harmonique

+

∫ +∞

−∞

∣∣∣∣∣
∂ψ̃(0, p)

∂p

∣∣∣∣∣

2

dp (9)

Un choix judicieux de l’origine des temps permet d’annuler le coefficient du terme
linéaire, ce qui signifie que 〈x2〉(t) est une parabole dont l’extremum est en t = 0.
On en déduit la relation

〈x2〉(t) = 〈x2〉(0) +
〈p2〉
m2

t2 (10)

En utilisant le résultat de la question précédente, on obtient finalement la variance

∆x(t)2 = 〈x2〉(t)− (〈x〉(t))2 = 〈x2〉(0) +
〈p2〉 − 〈p〉2

m2
t2 = ∆x2

0 +
∆p2

0

m2
t2 (11)

e) Donner une valeur approximative de ∆x(t) lorsque t → +∞. Interpréter physi-
quement le résultat obtenu.

Pour t→∞ on a
∆x(t) ∼ ∆p0

m
t . (12)

La dépendence linéaire en ∆p0/m suggère l’image classique d’un ensemble de pro-
jectiles groupés initialement dans une bande ∆x0 autour de x0, les vitesses de ces
projectiles étant réparties dans une bande ∆v = ∆p0/m autour de la vitesse de
groupe du paquet v0 = p0/m. Du fait de la dispersion en vitesse, des projectiles,
se trouvant initialement au même point, se trouvent uniformément répartis dans
une bande ∆v t au bout du temps t. L’impulsion moyenne p0 et la dispersion ∆p0

ne varient pas au cours du temps car l’impulsion est une constant du mouvement
pour une particule libre.

2. Oscillateur harmonique

On considère dans cette partie le cas d’un potentiel harmonique V (x) = 1
2mω

2x2

a) Écrire les deux équations dont sont respectivement solutions les fonctions ψ(x, t)
et ψ̃(t, p).

L’équation de Schrödinger s’écrit ici

i~
∂ψ(t, x)

∂t
= − ~2

2m

∂2ψ(t, x)

∂x2
+

1

2
mω2x2ψ(t, x) (13)

Par transformée de Fourier inverse, on obtient

i~
∂ψ̃(t, p)

∂t
=

p2

2m
ψ̃(t, p)− 1

2
m~2ω2∂

2ψ̃(t, p)

∂p2
(14)
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10. Corrigé devoir maison 0 : transformée de Fourier et relation d’incertitude

b) En exploitant l’analogie entre les deux équations obtenues à la question précédente,
montrer que

d〈p〉
dt

= mω2

∫ +∞

−∞
ψ̃∗(t, p)

~
i

∂ψ̃(t, p)

∂p
dp (15)

Il sera utile de considérer la variable X = p
mω ainsi que la fonction Φ(t,X) =√

mωψ̃(t,mωX).

Les deux équations obtenues à la question précédente ont exactement la même
forme, le membre de droite étant la somme d’un terme quadratique et d’un terme
en dérivée seconde. Pour que l’analogie soit plus évidente, considérons la fonction

Φ(t,X) =
√
mωψ̃(t,mωX) (16)

On peut aisément vérifier que le préfacteur a été choisi tel que la fonction Φ(t,X)
soit bien normée. On a

∂Φ(t,X)

∂X
= mω

√
mω

∂ψ̃

∂p
(t,mωX) (17)

et
∂2Φ(t,X)

∂X2
= (mω)2√mω∂

2ψ̃

∂p2
(t,mωX) (18)

En remplaçant dans l’équation dont ψ̃(t, p) est solution, on obtient

i~
∂Φ(t,X)

∂t
=
m2ω2X2

2m
Φ(t,X)− 1

2
m~2ω2 1

m2ω2

∂2Φ(t,X)

∂X2
(19)

soit

i~
∂Φ(t,X)

∂t
= − ~2

2m

∂2Φ

∂X2
+

1

2
mω2X2Φ(t,X) (20)

On retrouve l’équation de Schrödinger ! Ce résultat remarquable n’est naturellement
valable qu’en raison de la forme particulière (quadratique) du potentiel harmonique.
A l’aide du résultat des questions précédentes, on peut en déduire

d〈X〉(t)
dt

=
1

m

∫ +∞

−∞
Φ∗(t,X)

~
i

∂Φ

∂X
dX (21)

soit, en remplaçant X par son expression

1

mω

d〈p〉
dt

=
1

m

∫ +∞

−∞
ψ̃∗(t, p)

~
i
mω

∂ψ̃

∂p
dp (22)

ou encore
d〈p〉
dt

= mω2

∫ +∞

−∞
ψ̃∗(t, p)

~
i

∂ψ̃(t, p)

∂p
dp (23)
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2. Oscillateur harmonique

c) En déduire une relation entre d〈p〉/dt et 〈x〉. Comment cette relation se compare-
t-elle au résultat obtenu en mécanique classique ?

A l’aide de l’expression de 〈x〉(t) établie en PC2, on déduit de la question précédente
l’expression

d〈p〉
dt

= −mω2〈x〉(t) (24)

Pour un oscillateur harmonique classique, la force exercée s’écrit −dV/dx =
−mω2x donc la deuxième loi de Newton donne

dp

dt
= −mω2x

soit exactement la même expression !
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11. Corrigé du premier devoir à la
maison

Mécanique quantique (PHY 311)
Pierre Vanhove

1. Courant de probabilité

a) La densité de probabilité ρ(x, t) = |ψ(x, t)|2 = ψ(x, t)ψ∗(x, t). On considère

i~∂tρ = i~ ∂tψψ∗ + i~ψ ∂tψ∗ (1)

où l’on a introduit la notation ∂tf(x, t) := ∂f(x, t)/∂t. En utilisant l’équation de
Schrödinger

i~∂tψ(x, t) = − ~2

2m
∆ψ(x, t) + V (x, t)ψ(x, t) (2)

puisque le potentiel est réel on a

i~∂tρ = − ~2

2m
(ψ∗∆ψ − ψ∆ψ∗) (3)

Expression de l’on compare à

∇ · J =
~

2im
(∇ψ∗ ·∇ψ −∇ψ ·∇ψ∗) +

~
2im

(ψ∗∇ ·∇ψ − ψ∇ ·∇ψ∗)

=
~

2im
(ψ∗∇ ·∇ψ − ψ∇ ·∇ψ∗)

=
~

2im
(ψ∗∆ψ − ψ∆ψ∗)

= −∂tρ . (4)

Nous avons utilisé les relations suivantes

∇f(r, t) =



∂xf
∂yf
∂zf




∇ · J = ∂xJ
x + ∂yJ

y + ∂zJ
z

∇ ·∇f(r, t) = (∂2
x + ∂2

y + ∂2
z )f = ∆f (5)

b) On écrit ψ(r, t) = ϕ(r)χ(t). L’équation de Schrödinger s’écrit

i~∂tχ(t)ϕ(r) = Ĥψ(r, t) (6)
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11. Corrigé du premier devoir à la maison

avec

Ĥψ(r, t) =

(
− ~2

2m
∆ϕ(r) + V (r)ϕ(r)

)
χ(t) (7)

Comme le potentiel ne dépend pas du temps, et χ(t) 6= 0 ainsi que ϕ(r) = 0 on
peut réécrire ces équations de la façon suivante

i~∂tχ(t)

χ(t)
=
− ~2

2m∆ϕ(r) + V (r)ϕ(r)

ϕ(r)
(8)

Les variables t et r étant indépendantes cette quantité doit être constante ce qui
implique les équations (6) et (7) de l’énoncé.

L’équation sur χ(t) se résout simplement en

χ(t) = χ0 e
−iω t, ω =

E

~
. (9)

c) Si la solution est stationnaire l’énergie E est constante et ρ(r, t) = |ϕ(r)|2 est
indépendant du temps. Donc ∂tρ = 0 d’où ∇ · J = 0. Pour un problème à une
dimension nous avons

∇ · J = 0 = ∂xJ(x, t) =⇒ J(x, t) = Cste . (10)

d) L’équation de Schrödinger s’écrit alors

− ~2

2m
∂2
xϕ(x) + V0ϕ(x) = Eϕ(x) , (11)

La solution de cette équation du second ordre est

ϕ(x) = Aeikx +B e−ikx , (12)

avec

k :=

√
(E − V0)2m

~
. (13)

e) On a immédiatement que

Jx(x, t) =
~k
m

(
|A|2 − |B|2

)
. (14)

La partie de l’onde se déplaçant vers la droite est pour B = 0 et A 6= 0.

f) La fonction ψk(x, t) n’est pas normalisable. Une onde plane n’est pas physique car
elle correspond à un état d’impulsion k déterminé. Donc à un état infiniment étalé
dans l’espace.
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2. Marche de potentiel à une dimension.

g) Si ψk1(x, t) et ψk2(x, t) sont solutions de l’équation de Schrödinger par linéarité
ψ = ψk1 + ψk2 est aussi une solution :

i~∂tψ(x, t) = i~(∂tψk1(x, t) + ∂k2ψk2(x, t))
= Ĥψk1(x, t) + Ĥψk2(x, t)
= Ĥψ(x, t) (15)

Mais elle n’est pas une fonction propre du Hamiltonien.

Si on utilise la notation du début de l’exercice ψki(x, t) = ϕki(x) exp(−iEit/~)

La densité de probabilité ρ est donnée par

ρ(x, t) = |ψk1(x, t) + ψk2(x, t)|2
= |ψk1(x, t)|2 + |ψk2(x, t)|2 + 2<e(ψk1(x, t)∗ψk2(x, t))

= |ϕk1(x)|2 + |ϕk2(x)|2 + 2<e
(
ϕk1(x)∗ϕk2(x) ei

E2−E1
~ t

)
. (16)

La densité de probabilité dépend du temps si E1 6= E2. La pulsation du mouvement
est ω = (E2−E1)/~. Le courant de probabilité est également dépendant du temps.

2. Marche de potentiel à une dimension.

a) Dans la région I, x < 0, nous avons l’équation de Schrödinger

∂2
xψI(x) = −2mE

~2
ψI(x) (17)

et dans la région II x > 0

∂2
xψII(x) =

(V0 − E)2m

~2
ψII(x) (18)

Les solutions sont des exponentielles exp(±Kx) avec

K =

{
ik = i

√
2mE
~ pour x < 0

q =

√
2m(V0−E)

~ pour x > 0
. (19)

b) Les relations de continuité de la fonction d’onde, ainsi que de sa dérivée en x = 0
donne

A+B = C +D
ik(A−B) = q(D − C) . (20)
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11. Corrigé du premier devoir à la maison

c) Il faut prendre D = 0 pour avoir une fonction d’onde normalisable. On trouve
alors

B = A
ik + q

ik − q
C = A

2ik

q − ik
. (21)

d) Pour une particule venant de −∞ il faut prendre B = 0 et D = 0. Pour l’onde
réfléchie il faut prendre A = 0.

e) Par définition R = Jincident/Jreflechi comme

Jincident =
~k
m
|A|2; Jreflechi =

~k
m
|B|2 , (22)

on a

R =

∣∣∣∣
B

A

∣∣∣∣
2

=

∣∣∣∣
ik + q

ik − q

∣∣∣∣
2

= 1 . (23)

f) Le courant pour x > 0 est calculé à partir de la solution ϕII (avec toujours D = 0)

JII = <e
(

~q
2im
|C|2 e−2qx

)
= 0 (24)

Comme le courant de probabilité est nul, le facteur de transmission T = 0, ce qui
est compatible avec R = 1 trouvé ci-dessus.

La probabilité de présence dans la région x > 0 est donnée par

ρII(x, t) = |C|2 e−2qx (25)
∫ ∞

0
ρx>0(x)2dx =

|C|2

2q
> 0 , (26)

donc il y a une probabilité de présence non nulle dans la région x > 0 même s’il
n’y a pas de particule transmise. La fonction d’onde pénètre dans la marche de
potentiel sur une épaisseur de l’ordre de 1/q.

g) Comme l’onde est complètement réfléchie on peut considérer le déphasage. Par
définition pour une onde de la forme

ϕI(x) = A (eikx +
B

A
e−ikx) (27)
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3. Demi-tour devant un précipice

le déphasage est donné par

∆θ := arg

(
B

A

)
=
ik + q

ik − q
, =⇒ ∆θ = 2 arctan

(
k

q

)
= 2 arctan

(√
E

V0 − E

)
.

(28)

h) Si V0 → ∞ alors q → ∞. On trouve que B → −A et C → 0. La fonction d’onde
s’annule dans la région II ϕII(x) = 0 et dans la région I ϕI(x) = 2iA sin(kx).

Les conditions de continuités de la fonction d’onde sont toujours satisfaite et (20)
deviennent alors

A+B = 0 (29)
ik(A−B) = − lim

V0→∞
qC = −2ikA . (30)

La dérivée n’est pas continue car si l’on intègre l’équation de Schrödinger de part
et d’autre de la marche on a que

ϕ′I(0)− ϕ′II(0) = ϕ′I(0) = −2iAk (31)

ce qui correspond à l’équation (30).

i) Si E > V0 il suffit alors de poser dans les équation précédentes q = −iq̂ avec

q̂ =

√
(E − V0)2m

~
. (32)

Alors nous avons

R =

(
k − q̂
k + q̂

)2

T =
Jx>0

Jincident
=
∣∣∣ q
k

∣∣∣
∣∣∣∣
C

A

∣∣∣∣
2

=
4kq̂

(k + q̂)2
. (33)

On vérifié aisément que R+ T = 1.

j) On trouve alors les relations standards pour les coefficients de transmission et de
réflexion de l’optique en termes du ratio les longueurs d’ondes n1/n2 = λII/λI .

3. Demi-tour devant un précipice

a) Comme la source émets des particules depuis x = +∞, leur énergie E est forcé-
ment supérieure V0. En posant E := ~2k2

2m et E − V0 := ~2K2

2m > 0, l’équation de
Schrödinger dans chaque région donne

ϕ′′I (x) + k2ϕI(x) = 0 pour x ≤ 0
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11. Corrigé du premier devoir à la maison

ϕ′′II(x) +K2ϕII(x) = 0 pour x > 0 . (34)

Puisque les particules viennent de x = +∞ alors A = 0 et les solutions sont
données par

ϕI(x) = B e−ikx pour x ≤ 0
ϕII(x) = CeiKx +De−iKx pour x > 0 . (35)

Les conditions de continuités donnent que C +D = B et iK(C −D) = −ikB, qui
implique que

C =
K − k
K + k

D

B =
2K

k +K
D . (36)

Le coefficient de réflexion est donnée par

R =

∣∣∣∣
C

D

∣∣∣∣
2

=

(
K − k
K + k

)2

=

(√
E − V0 −

√
E

√
E − V0 +

√
E

)2

. (37)

b) Afin d’étudier le comportement de R nous remarquons que

R =
V 2

0

(
√
E − V0 +

√
E)4

(38)

on en déduit aisément que R est une fonction décroissante de l’énergie.

c) On constate que pour E & V0 le coefficient de réflexion se comporte comme R '
1− 4

√
E−V0
V0

, et que limE→V0 R = 1. Donc pour les particules d’énergie proche de
V0 sont complètement réfléchies. C’est un comportement purement quantique car
une partie de la fonction d’onde est dans le trou. Les particules classiques tombent
de la marche de potentiel.

4. Étalement du paquet d’onde

Dans cet exercice on revient sur l’interprétation de la relation d’incertitude discutée
en PC2.

a) Dans l’espace des impulsion l’équation de Schrödinger s’écrit

i~
∂ψ̂(p, t)

∂t
= Ĥ(p)ψ̂(p, t) = E(p) ψ̃(p, t) E(p) =

p2

2m
, (39)
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4. Étalement du paquet d’onde

donc
ψ̃(p, t) = ψ̃(p, 0) e−i

Et
~ . (40)

b) On suppose que ψ̂(p, t) est négligeable hors de p ∼ p0. Le développement de Taylor
autour de p0 donne

E(p) ' E(p0) + (p− p0)

(
∂E

∂p

)

p=p0

+O(p2)

=
p2

0

2m
+ (p− p0) v0 +O(p2) (41)

où p0 = mv0. La fonction d’onde ψ(x, t) est donné par la transformée de Fourier
de la fonction d’onde ψ̂(p, t) (voir PC2)

ψ(x, t) =
1√
2π~

∫

R
ψ̃(p, t) dp

' 1√
2π~

∫

R
ei
px
~ e−i

E(p)t
~ ψ̃(p, 0) dp

' ei
(p0v0−E0)t

~
1√
2π~

∫

R
ei
p(x−v0t)

~ ψ̃(p, 0) dp

' ei
(p0v0−E0)t

~ ψ(x− v0t, 0) . (42)

On constate qu’à cet ordre d’approximation

|ψ(x, t)|2 ' |ψ(x− v0t, 0)|2 . (43)

On a donc un paquet d’onde qui se déplace à la vitesse v0 sans dispersion (sans se
déformer).

c) À l’ordre deux en p alors

E(p) ' E0 + (p− p0)v0 +
(p− p0)2

2m
+O(p3) (44)

On utilise la fonction d’onde gaussienne étudiée en PC2

ψ̃(0, p) =
1

(πσ2~2)1/4
exp

(
−(p− p0)2

2σ2~2

)
(45)

On trouve alors après transformée de Fourier

ψ(x, t) =
1√
2π~

∫

R
ψ̃(p, t) dp

∼ ei
xp0−E0t

~
1√
2π~

∫

R
ei

(p−p0)(x−v0t)
~ −i (p−p0)2

2m~ t ψ̃(p, 0) dp

∼ 1

(πσ2~2)
1
4

ei
xp0−E0t

~
1√
2π~

∫

R
ei

(p−p0)(x−v0t)
~ −i (p−p0)2

2m~ t e−
(p−p0)2

2σ2~2 dp
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∼ 1

π
1
4

√
σ√

1 + itσ
2~
m

ei
xp0−E0t

~ e
−(x−v0t)2 σ2

2(1+it σ
2~
m ) . (46)

On en déduit que

|ψ(x, t)|2 ∼ σ
√
π
√

1 + σ4~2t2

m2

e
−(x−v0t)2 m2σ2

m2+t2~2σ4 . (47)

En utilisant les résultats de la PC2 sur les paquets d’onde gaussiens, on en déduit
l’écart type

∆x(t) =

√
1

2σ2
+

~2t2σ2

2m2
=

√
(∆x0)2 +

(
∆p0t

m

)2

. (48)

avec ∆x0 = 1√
2σ

et ∆p0 = ~σ/
√

2 les écarts types du paquet d’onde gaussien
libre. Il y a donc étalement du paquet d’ondes libres. Le termes en ∆p0/mt sug-
gère l’image classique d’un ensemble de projectiles groupés initialement dans une
bande ∆x0 autour de x0, les vitesses de ces projectiles étant réparties dans une
bande ∆v = ∆p0/m autour de la vitesse de groupe du paquet v0 = p0/m. Du
fait de la dispersion en vitesse, des projectiles, se trouvant initialement au même
point, se trouvent uniformément répartis dans une bande ∆v t au bout du temps
t. A l’instant initial, les particules sont réparties uniformément dans une boîte de
dimensions ∆x et ∆p et centrée en (x0, p0). L’impulsion moyenne p0 du paquet
d’onde et sa dispersion en impulsion ∆p0 ne varient pas au cours du temps car
l’impulsion est une constante du mouvement pour la particule libre.

106



12. Corrigé du second devoir à la
maison

Mécanique quantique (PHY 311)
Pierre Vanhove

1. Effet tunnel résonnant et contrôle de la transmission
d’un électron à travers une barrière

a)

H =

(
qV −A
−A −qV

)

b) Clairement detH = −(qV )2 −A2 donc

H =
√

(qV )2 +A2

(
cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

)

c) Les énergies sont E± = ±
√

(qV )2 +A2 et les vecteur propres associés sont |−〉 =
(− sin θ, cos θ) = − sin θ|g〉 + cos θ|d〉 pour E−, et |+〉 = (cos θ, sin θ) = cos θ|g〉 +
sin θ|d〉 pour E+.

d) On a des courbes en
√

(qV )2 +A2

-10 -5 5 10
qV

-10

-5

5

10

Energie

e) On débute avec un électron dans le puits de gauche |ψ(0)〉 = |g〉, soit en termes
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12. Corrigé du second devoir à la maison

d’états propres d’énergie |ψ(0)〉 = cos θ|+〉 − sin θ|−〉. Après un temps t l’état est
|ψ(t)〉 = cos θe−iE+t/~|+〉−sin θe−iE−t/~|−〉. Comme |d〉 = sin θ|+〉+cos θ|−〉 alors

Pd(t) = |〈d|ψ(t)〉|2 =

(
sin(2θ) sin

(
(E+ − E−)t

2~

))2

=
A2

(qV )2 +A2

(
sin

√
(qV )2 +A2t

~

)2

. (1)

f) La probabilité maximale est A2/((qV )2 + A2) cette probabilité vaut 1 lorsque
V = 0 et s’annule pour V →∞. On peut donc empécher les électrons de traverser
la barrière avec une tension.

g) Pour V = 0 nous avons

Pd(t) =

(
sin

At

~

)2

(2)

pour qV � A nous avons

Pd(t) =
A2

(qV )2

(
sin
|qV |t
~

)2

� 1 . (3)

h) On voit donc que lorsque la tension est faible la probabilité de passage est maximale
pour un temps t = ~π/2A avec la période ~π/A. Lorsque l’électron est passé dans
le puits de droite, avec une tension forte on supprime tout passage de nouvel
électron.

2. États cohérents de l’oscillateur harmonique

a) On a

a|α〉 = e−
|α|2

2

∞∑

n=0

αn√
n!
a|φn〉 (4)

avec a|φn〉 =
√
n|φn−1〉 et a|φ0〉 = 0 on a donc

a|α〉 = e−
|α|2

2

∞∑

n=1

αn√
(n− 1)!

a|φn−1〉 = α|α〉. (5)

Par conjugaison hermitique nous avons bien sur que (â|α〉)† = 〈α|â† = α∗〈α|.

b) L’état étant décomposé sur les états propres de H, on a

|ψ(t)〉 = e−
|α|2

2

∑

n≥0

αn√
n!
e−iΩt(n+ 1

2
)|φn〉
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2. États cohérents de l’oscillateur harmonique

= e−i
Ωt
2
− |α|

2

2

∑

n≥0

1√
n!

(αe−iΩt)n|φn〉

= e−i
Ωt
2 |α exp(−iΩt)〉 . (6)

On vérifie bien que cet état est normé car

〈ψ(t)|ψ(t)〉 = 〈α exp(−iΩt)|α exp(−iΩt)〉 (7)

et pour tout α on a que

〈α|α〉 = e−|α|
2
∑

n≥0
m≥0

(α∗)mαn

n!m!
〈φm|φn〉 . (8)

Dans la PC5 il est démontré que les états |φn〉 sont orthonormés 〈φm|φn〉 = δm,n
donc

〈α|α〉 = e−α|
2
∑

n≥0

|α|2n

n!
= 1 . (9)

c) On calcule 〈ψ(t)|x̂|ψ(t)〉 =
√

~
2mΩ (〈ψ(t)|â|ψ(t)〉 + 〈ψ(t)|â†|ψ(t)〉). Des questions

précedentes on nous savons que â|α exp(−iΩt)〉 = α exp(−iΩt) |α exp(−iΩt)〉 et
〈α exp(−iΩt)|â† = α∗ exp(iΩt) 〈α exp(−iΩt)|, donc

〈ψ(t)|x̂|ψ(t)〉 =

√
~

2mΩ

(
α e−iΩt〈ψ(t)|ψ(t)〉+ α∗ eiΩt〈ψ(t)|ψ(t)〉

)
(10)

Comme 〈ψ(t)|ψ(t)〉 = 1 on trouve que

〈ψ(t)|x̂|ψ(t)〉 =

√
~

2mΩ

(
α e−iΩt + α∗ eiΩt

)
. (11)

Ce qui correspond a un mouvement d’oscillation de fréquence Ω. En remarquant
que

d2〈ψ(t)|x̂|ψ(t)〉
dt2

= −Ω2 〈ψ(t)|x̂|ψ(t)〉 (12)

on retrouve l’équation du mouvement d’un oscillateur classique.

d) Pour le calcul de l’écart type (∆x)2 = 〈ψ(t)|x̂2|ψ(t)〉 − (〈ψ(t)|x̂|ψ(t)〉)2 on évalue

〈ψ(t)|x̂2|ψ(t)〉 =
~

2mΩ

(
〈ψ(t)|â2|ψ(t)〉+ 〈ψ(t)|(â†)2|ψ(t)

+ 〈ψ(t)|(ââ† + â†â|ψ(t)〉
)

(13)
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12. Corrigé du second devoir à la maison

nous avons

〈ψ(t)|â2|ψ(t)〉 = α2e−2iΩt (14)
〈ψ(t)|(â†)2|ψ(t)〉 = (α∗)2e2iΩt (15)
〈ψ(t)|â†â|ψ(t)〉 = |α|2 . (16)

Pour la dernière contribution nous utilisons la relation de commutation donnée en
PC5 [â, â†] = 1

〈ψ(t)|ââ†|ψ(t)〉 = 〈ψ(t)|(1 + â†â)|ψ(t)〉 = 1 + |α|2 . (17)

Donc
〈ψ(t)|x̂2|ψ(t)〉 =

~
2mΩ

((αe−iΩt + α∗eiΩt)2 + 1) (18)

Donc
(∆x)2 =

~
2mΩ

. (19)

C’est le même écart type que celui de l’état fondamental |φ0〉 de l’oscillator har-
monique.

e) Ce paquet d’onde oscille sans se déformer en conservant la forme d’une gaussienne,
et en suivant le mouvement classique. Si |α| est très grand, la largeur du paquet
d’onde devient négligeable par rapport à l’excursion du mouvement, et le com-
portement de l’oscillateur est indiscernable du comportement classique. Pour α
général nous avons un état « quasi » classique qui se comporte comme un état
classique.

Nous résumons la différence entre les états propres de l’Hamiltonien |φn〉 et les états
cohérents

État propre |φn〉 État cohérent |α〉
stationaire α(t) = α0 e

iΩt

〈E〉 = (n+ 1
2) ~Ω 〈E〉 = (|α|2 + 1

2) ~Ω
∆E = 0 ∆E = ~Ωα

〈x̂〉 = 0 〈x̂〉 =
√

2~
mΩ <e(α(t))

〈p̂〉 = 0 〈p̂〉 =
√

2~
mΩ =m(α(t))

∆x∆p = (n+ 1
2) ~ ∆x∆p = ~

2

φn(x) ex
2/2 sont les polynômes d’Hermites φα(x) sont des gaussiennes
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Troisième partie .

Compléments : exercices non
donnés, etc.
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1. Compléments

Exercices non donnés.

1. Conséquences de la relation d’incertitude de
Heisenberg

Pour un objet de masse m, le principe d’incertitude ∆x∆p ≥ ~
2 implique ∆x∆v ≥

~
2m où ∆x est la largeur de l’onde, et ∆v sa dispersion en vitesse. Si à l’instant t = 0,
l’onde est localisée, alors ∆x est faible et ∆v est donc grand. Ce qui implique que
l’onde se disperse et ne reste pas localisée.

a) Pour un électron, ~/m ' 10 cm2/s donc si à t = 0 on a ∆x ≤ 1 cm, alors ∆v ≥
~/(2m∆x) ≥ 0.5 cm/s donc ∆x dépasse 1 cm après t = 2 s.

b) Au contraire pour une poussière, ~/m ≥ 10−18m2/s, on peut avoir ∆x ' 10−9m
et ∆v ' 10−9m/s tous deux très petits.

2. Le puits carré infini

donné en PC 4 en 2013
Les développements récents de la technologie des semi-conducteurs permettent de

réaliser des superpositions alternées de couches d’arséniure de gallium et d’aluminium
(AlxGa1−xAs), dont les épaisseurs et la composition (valeur de x) sont contrôlées à
quelques couches atomiques près. L’énergie potentielle d’un électron se déplaçant per-
pendiculairement à ces couches dépend de la valeur de x, ce qui permet de réaliser
“à la carte” des puits et des barrières de potentiels à une dimension V (x). La phy-
sique d’un électron se déplaçant dans ces structures est bien décrite par l’équation
de Schrödinger à une dimension. Cependant, à cause de l’interaction avec le réseau
cristallin, le coefficient d’inertiem de l’électron, appelé “masse effective”, est beaucoup
plus faible que la masse me de l’électron dans le vide : on a en effet m = 0, 067 me .
On réalise une couche de GaAs, d’épaisseur a, prise en sandwich entre deux barrières

épaisses de AlAs. L’énergie potentielle de l’électron dans AlAs étant très élevée, on
considérera que le mouvement de l’électron est celui d’une particule de masse m dans
le potentiel :

V (x) =∞ si x < 0 ou si x > a
V (x) = 0 si 0 ≤ x ≤ a. (1)

. Niveaux d’énergie du système.
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1. Compléments

a) Montrer que les énergies propres sont quantifiées sous la forme En = n2E1 où n
est un entier strictement positif. Calculer E1 et déterminer les fonctions propres
χn(x) correspondant à En.

b) Comment la symétrie des χn(x) par rapport à a/2 est-elle reliée à la parité de n ?

. Évolution d’un paquet d’ondes et émission de rayonnement.

c) On suppose que le système est placé initialement dans l’état ψ(x, 0) =
[χ1(x) + χ2(x)] /

√
2. Calculer ψ(x, t) à un instant t ultérieur.

d) Calculer l’évolution du “centre” du paquet d’onde 〈x− a/2〉 (t) et commenter.

On donne :
a∫

0

(
x− a

2

)
sin
(πx
a

)
sin

(
2πx

a

)
dx = −8a2

9π2
.

e) Au mouvement d’une charge le long de Ox est associé un dipôle électrique D = qx,
qui est susceptible de rayonner une onde électromagnétique à sa fréquence d’os-
cillation. Calculer la longueur d’onde du rayonnement émis (“transition” électro-
magnétique entre les niveaux E1 et E2) pour une largeur du “puits quantique”
a = 15 nm. Les puits quantiques sont en principe utilisés comme détecteurs de
rayonnement infrarouge.
On pourra se servir des relations utiles : ~c = 197, 3 eV.nm et mec

2 = 0, 511 MeV.

3. Effet tunnel avec double puits

Remarque : Cet exercice demande des calculs assez important. Il peut être considéré
comme optionnel.
Le but de cet exercice est de relié entre eux différents problèmes de puits de po-

tentiels, et de montrer que l’effet tunnel permet de lever la dégénérescence entre des
niveaux quantique. Un effet qui sera revu en détails en PC7. On considère le potentiel
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3. Effet tunnel avec double puits

V (x) donné par un double puits tel que

V (x) =





+∞ x ∈]−∞, 0[∪[2a+ b,+∞[

0 x ∈ [0, a] ∪ [a+ b, 2a+ b]

V0 x ∈ [a, a+ b]

. (2)

On considère une particule de masse m et d’énergie E faible devant la valeur du
potentiel E � V0. On supposera que 2mV0b

2/~2 � 1.

a) Montrer que la fonction d’onde prend la forme suivante

ψI(x) = A sin(kx) 0 < x < a
ψII(x) = B1 e

qx +B2 e
−qx a < x < a+ b (3)

ψIII(x) = C sin(k(2a+ b− x)) a+ b < x < 2a+ b .

avec

k =

√
2mE

~
, q =

√
2m(V0 − E)

~
. (4)

b) Écrire les conditions de continuité de la fonction d’onde et de sa dérivée. En déduire
l’équation suivant

(q tan(ka) + k) eqb = ± (q tan(ka)− k) . (5)

c) Dans l’approximation E � V0, montrer qu’à l’ordre le plus bas en l’énergie de la
particule E, l’état de plus bas niveau d’énergie a pour énergie et moment

k0 =
nπ

a
, E(0)

n =
~2k2

0

2m
, n ≥ 1 . (6)

d) À quelle système simple correspond cette solution ?

e) En utilisant (5) déterminer l’énergie et le moment des niveaux suivants en le dé-
veloppement en k.

f) On considère la limite b → ∞. Montrer que les premiers niveaux d’énergie sont
données par

E(1)
n = E(0)

n −
2E

(0)
n

aq0
, q0 =

√
2m(V0 − E(0)

n )

~
. (7)

g) À quel type de potentiel correspondent ces solutions ? Quelle est la dégénérescence
des niveaux d’énergie ?

h) On revient maintenant aux cas ou b est de valeur finie. Un effet tunnel entre la
partie gauche et droite du potentiel sera possible et entrainera une levée de la
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1. Compléments

dégénérescence. Montrer que pour b fini les niveaux d’énergie deviennent

E−n = E(1)
n − 4

E
(0)
n

q0a
e−q0b

E+
n = E(1)

n + 4
E

(0)
n

q0a
e−q0b . (8)

i) Déterminer les fonctions d’ondes associées à ces niveaux d’énergie.

4. Application à une barrière infiniment haute et mince.

a) Comme a → 0 et V0 → ∞ avec aV0 = C constant, en intégrant l’équation de
Schrödinger

− ~2

2m
ϕ′′(x) = (E − V0)ϕ(x) (9)

entre 0 et a on a

− ~2

2m

(
ϕ′(a)− ϕ′(0)

)
=

∫ a

0
(E − V0)ϕ(x)dx =

∫ 1

0
(aE − aV0)ϕ(ay) dx . (10)

La limite a→ 0 donne

− ~2

2m
(ϕ′(0+)− ϕ′(0−)) = −C ϕ(0) . (11)

b) Dans chacune des région nous avons (pour une onde plane incidente de la gauche)

ϕI(x) = Aeikx +Be−ikx x < 0 (12)
ϕII(x) = Feikx x > 0 . (13)

Les conditions de raccordement en x = 0 donnent

A+B = F (14)

− ~2

2m
(ikF − (A−B)ik) = −CF . (15)

Dont on déduit

B = A
2− mC

i~k
mC
i~k − 1

(16)

F =
A

mc
i~k − 1

. (17)
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4. Application à une barrière infiniment haute et mince.

c) Donc

T =
1

1 + m2C2

~2k2

. (18)

d) On constate que q =
√

2m(V0 − E)/~ =
√

2mV0//hbar est tel que qa→ 0 lorsque
a→ 0. En prenant la limite dans l’expression pour T on retrouve le même résultat
pour le coefficient de transmission.

e) Evaluer les coefficients de réflexion et de transmission de la barrière dans cette
limite et étudier leurs variations en fonction de l’énergie E (en particulier les
limites de basse et haute énergie).

f) Est-ce que l’énergie peut être négative dans cette limite ?
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2. Relation d’incertitude et gravitation
quantique

L’unification de la mécanique et de la relativité générale est un problème ouvert,
mais certaines questions peuvent être abordées par des raisonnements semiqualitatifs,
utilisant surtout des arguments d’analyse dimensionnelle. Le but de cet exercice est
d’étudier ainsi une extension possible des inégalités de Heisenberg, prenant en compte
des effets de gravitation quantique.

a) En utilisant la constante de Planck ~, la constante de Newton GN et la vitesse de
la lumière, montrer que l’on peut construire une longueur (la longueur de Planck
LP ), un temps (le temps de Planck TP ), une masse (la masse de Planck MP ) et
une énergie (l’énergie de Planck EP ). On pourra remaquer que EP = MP c

2 et
TPEP = ~.

b) Calculez les valeurs numériques de LP , MP , EP et TP .
On rappelle que

c = 299792458m/s,
~ ' 1.054571726 × 10−34 kgm2/s

GN ' 6.67384 × 10−11m3/(kg s2) . (1)

En 1923 Heisenberg justifia sa relation d’incertitude en considérant une mesure
de position de l’électron par un « microscope », éclairé par des photons de longueur
d’onde λ. À cause de la diffraction, la position de l’électron ne peut pas être connue
avec une précision meilleure que λ, donc ∆xH ≥ λ. Par ailleurs, pour obtenir une
image, la direction du vecteur d’onde ~k du photon ne peut pas être bien définie, donc
l’électron va subir un recul aléatoire de l’ordre ∆pH ' ~/λ. En faisant le produit de
ces deux quantités on a bien ∆xH ∆pH ≥ ~.

On considère maintenant l’incertitude supplémentaire induite par une interaction
gravitationnelle entre le photon et l’électron. On admettra pour cela qu’un photon
d’énergie Eph possède une masse effective (gravitationnelle) Eph/c2.

a) Calculer l’accélération subie par l’électron soumis à l’attraction gravitationnelle
d’un photon d’énergie Eph. On traitera cette interaction comme si le photon était
à une distance fixe L de l’électron, et agissait pendant un temps L/c.

b) En déduire la distance ∆xG parcourue par l’électron durant l’interaction. Et véri-
fier que L n’apparait plus dans le résultat.
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2. Relation d’incertitude et gravitation quantique

c) En utilisant la relation entre l’impulsion du photon et son énergie Eph = pph c,
et en supposant que l’impulsion du photon est transférée à l’électron comme dans
le calcul d’Heisenberg, écrire une relation entre ∆xG et ∆p faisant intervenir la
longueur de Planck LP .

d) On suppose que la dispersion totale ∆x peut s’écrire ∆x = ∆xH + γ2∆xG où γ
est une constante sans dimension dépendant de la théorie particulière considérée.
Montrez que la relation d’incertitude généralisée pour l’électron est donnée par

∆x ≥ ~
∆p

+
γ2L2

P

~
∆p . (2)

e) Montrer que cette relation a un minimum en fonction de ∆p, qui correspond à

∆x ≥ 2γ LP . (3)

Pouvez-vous Interpréter cette relation ? On pourra distinguer les situations usuelles
(∆p� ~/LP ) et celles à très haute énergie (∆p ∼ ~/LP ).
Comment se situent les « hautes énergies » (E ∼ EP ) par rapport à celles atteintes
dans la LHC (14TeV = 14 1012 eV) ?

0.1. Contexte physique

Dès 1916 Albert Einstein argumenta de la nécessité de quantifier le champs gravi-
tationnel au même titre que l’on doit quantifier le champs électromagnétique

Gleichwohl müßten die Atome zufolge der inneratomischen Elektronenbe-
wegung nicht nur elektromagnetische, sondern auch Gravitationsenergie
ausstrahlen, wenn auch in winzigem Betrage. Da dies in Wahrheit in der
Natur nicht zutreffen dürfte, so scheint es, daß die Quantentheorie nicht
nur die Maxwellsche Elektrodynamik, sondern auch die neue Gravitations-
theorie wird modifizieren müssen

Les arguments de cet exercice sont essentiellement dimensionnels, néanmoins la
nécessité d’étendre la relation d’Heisenberg à haute énergie (pour les grandes valeurs
de ∆p) est une propriété de la théorie des corde et d’autre théorie de gravité quantique.
La constante γ dépend du schéma de quantification de la théorie. Cette relation
d’incertitude étendue est particulièrement importante pour la compréhension de la
physique de l’évaporation (quantique) des trous noirs.

Références :

1. A. Einstein, “Approximative Integration of the Field Equations of Gravitation,”
Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys. ) 1916 (1916) 688.

2. D. Amati, M. Ciafaloni and G. Veneziano, “Classical and Quantum Gravity
Effects from Planckian Energy Superstring Collisions,” Int. J. Mod. Phys. A 3
(1988) 1615.
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3. D. Amati, M. Ciafaloni and G. Veneziano, “Can Space-Time Be Probed Below
the String Size ?,” Phys. Lett. B 216 (1989) 41.

4. D. J. Gross and P. F. Mende, “String Theory Beyond the Planck Scale,” Nucl.
Phys. B 303 (1988) 407.

5. E. Witten, Phys. Today, Apr. 24 (1996) –
http://www.sns.ias.edu/ witten/papers/Reflections.pdf.

6. S. Hossenfelder, “Minimal Length Scale Scenarios for Quantum Gravity,” Living
Rev. Rel. 16 (2013) 2 [arXiv :1203.6191 [gr-qc]].

1. Corrigé

a) L’analyse dimensionnelle donne

LP =

√
~GN
c3
' 1.6 10−35 cm, TP =

√
~GN
c5
' 0.54 10−43 s

MP =

√
~c
GN
' 2.2 10−8 kg, EP =

√
~c5

GN
' 1.2 1019 GeV . (4)

b) On vérifie aisément les relations EP = MP c
2, TPEP = ~ ainsi que LP = Tp c.

a) L’accélération de l’électron sous l’attraction gravitationnelle d’un photon d’énergie
Eγ est

~̈r = −GN
r3

Eγ
c2
~r (5)

b) Dans la boite de longueur L l’interaction dure un temps de l’ordre L/c donc

∆xG '
GN
L2

Eγ
c2

(
L

c

)2

=
GN Eγ
c4

=
GN p

c3
=
L2
P p

~
. (6)

On remarquera que la taille caractéristique de la boite n’apparait plus dans cette
relation.

c) On considère la relation d’incertitude étendue sur ∆x

∆x ≥ ~
∆p

+ γ2L
2
P

~
∆p . (7)

Le membre de droite est une fonction de ∆p ayant une valeur minimale pour
∆p∗ = ~/(γLP ). Ainsi nous trouvons que

∆x ≥ 2γ LP . (8)
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2. Relation d’incertitude et gravitation quantique

d) La relation d’incertitude (7) indique que pour des énergies faibles ∆p � ~/LP
devant l’impulsion de Planck, les lois de la mécanique non-relativistes dominent.
À très haute énergie la relation d’Heisenberg impliquerait une absence de relation
d’incertitude entre ∆x et ∆p ce qui n’est pas possible avec l’image des créations
de trous noirs prédit par la relativité générale. La relation d’incertitude étendue
implique qu’à très haute énergie on ne peut pas résoudre des distances inférieures
la longueur de Planck, qui fournit la taille minimale des « grains d’espace-temps ».
La valeur de γ dépend du schéma de quantification de la gravitation. Cette valeur
peut-être déduite de calculs d’amplitudes à haute énergie en théorie des cordes.

Les énergies sont supérieures de 15 ordres de grandeurs à celles obtenues dans le
LHC.
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3. Filtres à spins et Corrélations

1. Filtres

Figure 1. – Chemins suivis par un faisceau d’électron (a) polarisé | ↑〉, (b) polarisé
| ↓〉 et (c) non polarisé.

On considère un ensemble de trois aimants avec une orientation alternée. Un élec-
tron avec un spin | ↑〉 suit le chemin vers le haut cf. fig. 1(a), avec un spin | ↓〉 le
chemin vers le bas cf. fig. 1(b). Dans un faisceau d’électron non polarisé la moitié des
électrons suivront le chemin haut et la moitié le chemin bas cf. fig. 1(c).
On place un block de plomb sur le chemin bas bloquant tous les électrons avec un

spin | ↓〉, et seuls les électrons avec un spin | ↑〉 émergent du dispositif. On symbolise
ce dispositif par un bloc avec une flèche verticale

De manière plus générale l’orientation du spin sélectionné est indiqué par l’angle
d’inclinaison du dispositif.
Pour chacune des configuration suivantes donner la fraction des particules émer-

gentes par rapport au total des particules incidentes

a) Pour une source polarisée à 50% | ↑〉 et 50% | ↓〉, on place un
filtre orienté d’un angle θ par rapport à la verticale. Quelle est
le pourcentage des électrons traversant le filtre en fonction de θ
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3. Filtres à spins et Corrélations

b) deux filtres orientés à 0 degré

c) un filtre à 0 degré et 90 degrés

d) un filtre à 0 degrés et à 180 degrés

e) un filtre à 0, 90 et 180 degrés

1.1. Corrélations

On s’intéresse maintenant aux corrélations avec une source radioactive qui émet
une pair d’électrons non polarisée : par exemple un électron avec un spin | ↑〉 est
émis vers la gauche et électron avec un spin | ↓〉 est émis vers la droite. On aussi un
l’émission avec le spin | ↓〉 vers la droite et le spin | ↑〉 vers la gauche.
Qu’observe-t-on dans les configurations suivantes avec des filtres orientés l’un

orienté à 0 degrés

f) le second à 0 degré

g) le second à 180 degrés

h) le second à 90 degrés

i) le second à 45 degrés

2. Corrigé

! ! ! REDIGER L EXPLICATION ! ! !
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2. Corrigé

2.1. Filtres

Si la source émet un faisceaux d’électron non polarisé, le premier filtre sélectionne
50% des électron | ↑〉 le taux d’électron transmis est

a) Pour une source polarisée à 50% | ↑〉 et 50% | ↓〉, on place un filtre orienté d’un
angle θ par rapport à la verticale. Quelle est le pourcentage des électrons traversant
le filtre en fonction de θ : P = 100 cos2 θ

2 .

b) deux filtres orientés à 0 degré : second filtre sélectionne 100% des électron sortant
du premier filtre. Donc à la sortie nous avons 50% des électrons émis par la source.

c) un filtre à 0 degré et 90 degrés : le second détecteur sélectionne 50% des électrons
sortant du premier filtre donc à la sortie nous avons 25% des électrons émis par la
source.

d) un filtre à 0 degrés et à 180 degrés : le second filtre bloque tous les électrons donc
à la sortie nous avons 0% des électrons émis par la source.

e) un filtre à 0, 90 et 180 degrés : Nous avons donc à chaque fois 50% des électrons
sélectionnés pour un résultat de 12.5% des électrons émis par la source.

2.2. Corrélations

Comme la source émet des paires d’électron avec un spin | ↑〉gauche ⊗ | ↓〉droite ou
bien | ↓〉gauche ⊗ | ↑〉droite de sorte à ce que le spin total soit nul.
Après les filtres on détecte donc

f) deux filtres orientés à 0 degré : soit un électron à gauche et rien à droite pour une
paire | ↑〉gauche⊗| ↓〉droite, soit un électron à droite et rien à gauche pour une paire
| ↓〉gauche ⊗ | ↑〉droite.

g) un filtre à 0 degré et 180 degrés : soit un électron à gauche et à droite pour
une paire | ↑〉droite ⊗ | ↓〉gauche, soit rien ni à gauche, ni à droite pour une paire
| ↓〉droite ⊗ | ↑〉gauche.

h) un filtre à 0 degrés et à 90 degrés : la moitié des électron émergent du filtre à
droite, et la moitié des électrons émergent du filtre à gauche. Lorsqu’un électron
passe par le filtre gauche (orienté à 90 degrés), seulement la moitié du temps un
électron émerge du filtre droit.

i) un filtre à 0 degrés et à 45 degrés : on a la même réponse qu’au point précédant.
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4. États cohérents de l’oscillateur
harmonique

Le but de ce devoir est de décrire dans une première partie des états particuliers
(états “cohérents” ou “quasi-classiques”) de l’oscillateur harmonique, qui représentent
la meilleure “approximation classique” du mouvement de l’oscillateur. La seconde par-
tie du sujet décrit l’utilisation de ces états pour fabriquer une superposition quantique
d’états du type “chaton de Schrödinger”[cf les derniers transparents de l’amphi 3 le 7
mai dernier].

a) On considère comme en PC 5 un oscillateur harmonique décrit par un hamiltonien
Ĥ = p̂2/2m + kx̂2/2. On pose ω =

√
k/m. On utilise les observables réduites

X̂ = x̂
√
mω/~ et P̂ = p̂/

√
mω~, ainsi que les opérateurs â, â+ et N̂ définis par

â = (X̂ + iP̂ )/
√

2, â+ = (X̂ − iP̂ )/
√

2, et N̂ = â+â. Dans toute la suite, on
travaillera avec les opérateurs réduits X̂ et P̂ , et on utilisera les coordonnées
réduites X et P en position et en impulsion.

b) On note |n〉 les états propres de Ĥ, de valeur propre (n + 1/2)~ω. Calculer 〈X〉,
〈P 〉, ∆X2 et ∆P 2 puis le produit ∆X∆P dans un état |n〉. Peut-on considérer
que 〈X〉 et 〈P 〉 évalués dans un état propre de Ĥ ont un comportement classique ?

c) On considère un état propre noté |α〉 de l’opérateur d’annihilation : â|α〉 = α|α〉,
où α est un nombre complexe arbitraire, et on décompose cet état sur la base des
états |n〉 : |α〉 =

∑
n cn(α)|n〉.

i) Démontrer par récurrence que cn(α) = exp(−|α|2/2)αn/
√
n!. On utilisera

les résultats de la PC 5 sur les propriétés de â|n〉, ainsi que le fait que la
loi de probabilité (normée) P (n) = e−µµn/n! soit une loi de Poisson de
paramètre µ, dont la valeur moyenne et la variance sont toutes deux égales à µ.

ii) Quelle est la probabilité pour qu’une mesure de l’observable N̂ donne le
résultat n si le système est dans l’état |α〉 ? En déduire 〈N〉 et ∆N . Montrer
que ∆N/〈N〉 � 1, si 〈N〉 est grand.

d) On considère maintenant l’état |αeiϕ〉.
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4. États cohérents de l’oscillateur harmonique

i) Montrer que |αeiϕ〉 6= eiϕ|α〉. Quelles sont les composantes de |αeiϕ〉 sur la
base des états |n〉 ?

ii) Démontrer que si |ψ(t = 0)〉 = |α〉, alors |ψ(t) = e−iωt/2|α(t)〉, où |α(t)〉 est
obtenu en changeant |α〉 en |α(t)〉 = |αe−iωt〉.

iii) Montrer que dans l’état |ψ(t)〉, on a α(t) = 〈X̂〉/
√

2+ i〈P̂ 〉/
√

2. En supposant
maintenant α = iρ/

√
2 pour t = 0 (où ρ est réel), calculer 〈X̂〉(t) et 〈P̂ 〉(t)

dans l’état |ψ(t)〉, et montrer que l’on retrouve le mouvement classique de
l’oscillateur pour 〈X〉t et 〈P 〉t.

e) On suppose que l’oscillateur est dans l’état |ψ(t)〉.
i) Calculer ∆Xt et ∆Pt (on vérifiera en particulier que ces quantités sont

indépendantes du temps). Que vaut le produit ∆X∆P ? Que peut-on en
déduire sur les fonctions d’onde en X ou en P ?

ii) En utilisant l’équation â|α(t)〉 = α(t)|α(t)〉, montrer que la fonction d’onde
ψ(X, t) de l’état |α(t)〉 est donnée, à un facteur de phase global (on ne recal-
culera pas le facteur de normalisation), par :

ψ(X, t) = [2π∆X2]
−1/4

exp

[
−
(
X − 〈X〉t

2∆X

)2

+ iX〈P 〉t

]

On peut montrer, de même, que la « fonction d’onde en P » de l’état |α(t)〉 est
donnée par :

ψ̃(P, t) = [2π∆P 2]
−1/4

exp

[
−
(
P − 〈P 〉t

2∆P

)2

+ iP 〈X〉t

]

f) Décrire qualitativement le mouvement de l’oscillateur en le comparant au mouve-
ment classique. Que se passe-t-il en particulier si |α| devient très grand ?

1. Chaton de Schrödinger (“Schrödinger’s kitten”)

On considère l’état |χ(t = 0)〉 = c0(|α〉+ |−α〉) avec α = iρ où ρ est un nombre réel
grand devant un, et où c0 est une constante de normalisation que l’on ne calculera pas.

a) Calculer les fonctions d’ondes χ(X, t) et χ̃(P, t) associées à l’état |χ(t)〉.
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2. corrigé États cohérents de l’oscillateur harmonique

b) En déduire les densités de probabilité Π(X, t) et Π̃(P, t) pour ωt = π/2. On
mesure la position de l’oscillateur à l’instant t = π/2ω. Quelles valeurs peut-on
trouver, et avec quelles probabilités ?

c) D’après le formalisme de la mécanique quantique, le pendule est alors “des deux
côtés à la fois”, ce qui est une situation de superposition quantique d’états
macroscopiquement distincts, analogue au problème du “chat de Schrödinger”.
Montrer que le caractère quantique de cette superposition apparait sur la densité
de probabilité Π̃(P, t = π/2ω), que l’on pourra comparer à celle que l’on aurait
pour les états |α〉 et −|α〉 considérés séparément.

2. corrigé États cohérents de l’oscillateur harmonique

a) H = ~Ω(N+ 1
2), donc H|n〉 = (n+ 1

2) ~Ω|n〉 où n est un entier positif ou nul. On a
〈n|H|n〉 = 〈n|P |n〉 = 0 donc ces valeurs moyennes sont nulles à tout instant alors
que l’énergie est arbitrairement élevée. Ceci ne correspond pas à un état classique
« raisonnable ».

b) On obtient a|α〉 =
∑

n cn(α)a|n〉 d’où α
∑

n cn−1(α) |n−1〉 =
∑

n cn(α)
√
n|n−1〉

donc cn(α) = α cn−1(α)/
√
n = · · · = αnc0(α)/

√
n!. En écrivant que |α〉 est normé

on a 1 = |c0(α)|2
∑

n |α|2n/n! = |c0(α)|2 exp(|α|2). Donc c0(α) = exp(−|α|2/2)
à un facteur de phase arbitraire prés. P (n) = |cn(α)|2 = exp(−|α|2)|α|2n/n!. Loi
de Poisson de paramètre |α|2 donc 〈N〉 = (∆N)2 = |α|2. Et ∆N/〈N〉 = |α|−1 =
1/
√
〈N〉 � 1 si 〈N〉 est grand.

c) L’état étant décomposé sur les états propres de H, on a
|ψ(t)〉 = exp(−|α|2/2)

∑
n α

n/
√
n! exp(−iΩt(n + 1/2))|n〉 =

exp(−iΩt/2) exp(−|α|2/2)
∑

n(α exp(−iΩt))n|n〉 = exp(−iΩt/2)|α exp(−iΩt)〉.

d) 〈X〉(t) = ρ sin(Ω t), 〈P 〉(t) = ρ cos(Ω t). D’après les expressions de X̂ et P̂ en fonc-
tion des â et â† (cf. PC5), alors (∆X)2 = (∆P )2 = 1/2 ou en unités dimensionnées
∆X ∆P = ~/2. Le paquet d’onde est donc gaussien comme démontré en PC2. Ex-
plicitement nous avons (X̂ + iP̂ ) |α〉 =

√
2α|α〉 and (X −

√
2α)ψ(X) = −dψ(x)

dx ,
ψ(x) = Cste exp(−(X −

√
2α)2/2) = Cste exp(−(X − 〈X〉 − i〈P 〉)2/2) =

Cste exp(iq) exp(−(X − 〈X〉)2/(4∆X2) + iX〈P 〉). Avec les dimensions ψ(x) =
(2π∆X2)−1/4 exp(−(x − 〈x〉)2/(2∆x)2 + ix〈p〉/~). En représentation |p〉 on a
ψ̃(p) = (2π∆p2)−1/4 exp(−(p− 〈p〉)2/(2∆p)2 − ip〈x〉/~).

Chacun des deux paquets d’ondes oscille sans se déformer en suivant le mouvement
classique. Si |α| est très grand, la largeur du paquet d’onde devient négligeable
par rapport à l’excursion du mouvement, et le comportement de l’oscillateur est
indiscernable du comportement classique.
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4. États cohérents de l’oscillateur harmonique

3. corrigé Chaton de Schrödinger (« Schrödinger’s
kitten »)

a) Il est plus commode de faire les calculs ci-dessous avec les positions et im-
pulsions X̂ et P̂ sans dimensions. ψ(X) = (2π∆X2)−1/42−1/2 (exp(−(X −
ρ sin(Ωt))2/2 + iXρ cos(Ωt)) + exp(−(X + ρ sin(Ωt))2/2 − iXρ cos(Ωt))) et
ψ̃(P ) = (2π∆P 2)−1/42−1/2 (exp(−(P − ρ sin(Ωt))2/2− iPρ cos(Ωt)) + exp(−(P +
ρ sin(Ωt))2/2 + iPρ cos(Ωt))) On en déduit pour Ωt = π/2 P (X) =
(4π)−1/2| exp(−(X − ρ)2/2) + exp(−(X + ρ)2/2)|2. Deux gaussiennes centrées en
±ρ. Π(p) = (4π)−1/2 exp(−P 2/2)|2 cos(Pρ)|2. La modulation de la distribution en
P est la signature de la superposition quantique. Elle n’existe pas pour les états
pris séparément, et disparait extrêmement vite (d’autant plus vite que ρ est grand)
en présence de dissipation.
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