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1. PC 1 : Transformations de Lorentz

Relativité restreinte (PHY 431)
Pierre Vanhove

PC du 4 novembre 2014

1.1. Rappel de cours

Le postulat de la constance de la vitesse de la lumière c permet de construire la loi
de transformation entre les coordonnées de deux référentiels R et R′ en mouvement
relatif.

Figure 1. – référentiels en mouvement relatif.

Si on note (t, x, y, z) et (t′, x′, y′, z′) les coordonnées d’un événement dans chacun
de ces référentiels de telle sorte que l’événement de coordonnées (0, 0, 0, 0) coïncide
dans les deux référentiels. Si le référentiel R′ se déplace par rapport à R avec la
vitesse réduite β le long de l’axe Ox, selon le schéma 1, alors les coordonnées dans R′
s’obtiennent par l’application de la transformation de Lorentz spéciale :

ct′ = γ(ct− β x) ,
x′ = γ(−β ct+ x) ,
y′ = y (1)
z′ = z ,

11



1. PC 1 : Transformations de Lorentz

avec γ le facteur de boost de Lorentz

γ =
1√

1− β2
; β =

v

c
. (2)

Cette transformation prend la forme matricielle suivante



ct′

x′

y′

z′


 = Λ(v)




ct
x
y
z


 ; avec Λ(v) :=




γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1


 . (3)

Alors
det Λ(v) = 1 (4)

La transformation inverse est alors

Λ(v)−1 =




γ γβ 0 0
γβ γ 0 0
0 0 1 0
0 0 0 1


 = Λ(−v) (5)

Plus généralement, les transformations spéciales de Lorentz forment un groupe à un
paramètre. Elles sont représentées par des matrices unimodulaires Λ ∈ SO(1, 3).

1.1.1. Contexte historique

En 2012 nous avons commémoré le centenaire de la mort d’Henri Poincaré (1854-
1912, X1873). Henri Poincaré a contribué au développement de la théorie de la re-
lativité restreinte. Max Born indique que la théorie de la relativité « a résulté des
efforts communs d’un groupe de chercheurs exceptionnels : Lorentz, Poincaré, Ein-
stein, Minkowski ». Wolfgang Pauli dit aussi « Both Einstein and Poincaré, took their
stand on the preparatory work of H. A. Lorentz, who had already come quite close to
the result, without however quite reaching it. In the agreement between the results of
the methods followed independently of each other by Einstein and Poincaré I discern
a deeper significance of a harmony between the mathematical method and analysis
by means of conceptual experiments (Gedankenexperimente), which rests on general
features of physical experience. »

1.2. Le problème d’Einstein

Quand Einstein était enfant, il se posa la question suivante : un coureur se regarde
dans un miroir qu’il tient à bout de bras devant lui. S’il court à une vitesse proche
de la vitesse de lumière, pourra-t-il se voir ? Étudier cette question dans le cadre
relativiste.

12



1.3. Contraction des longueurs et dilatation du temps

1.3. Contraction des longueurs et dilatation du temps

Figure 2. – Schéma de l’Observatoire Pierre Auger installé en Argentine et aux états-
unis au Colorado

1.3.1. Exercice

À une altitude inférieure à 35 000 m, les muons ont une énergie originelle moyenne
de 6 GeV.

a) Quelle est la vitesse initiale des muons d’une masse mµ ' 100 MeV/c2 ? ( 1 GeV=
109 électron-volts, et 1 MeV= 106 électron-volts, 1 électron-volt= 1.602 10−19

Joules = 1.783 10−36 kg c2, c = 299792458m/s.)

b) Avec une durée de vie de τ0 ' 2.2 10−6s quelle est la distance maximale parcourue
dans le cadre de la cinématique Galiléenne ?

c) Dans le référentiel du détecteur, quelle est leur durée de vie ?

d) Quelle est la distance parcourue par le muon dans le référentiel du détecteur ?

e) Quelle est l’interprétation de ces résultats du point de vue du muon ?

1.3.2. Contexte historique et expérimental

Les rayons cosmiques, particules chargées très énergétiques, interagissent avec l’air
présent dans la haute atmosphère. Il y a alors formation de particules, comme des

13



1. PC 1 : Transformations de Lorentz

pions qui se désintègrent en muons et neutrinos π− → µ− + ν̄µ. Les pions ont une
durée de vie faible de l’ordre de la nanoseconde. La désintégration se produit dans la
haute atmosphère à une altitude de quelques dizaines de kilomètres.
Les muons ont la même charge que celle de l’électron, ils sont environ 200 fois

plus lourd avec une masse de mµ ' 105.66MeV/c2 (avec c = 299792458m/s). Leur
durée de vie est de τ0 = 2.197 10−6s. Ils sont sensible aux interactions faibles mais
pas aux interactions fortes. Ceux sont les particules chargées les plus nombreuses au
niveau de la mer. Comme toute particule chargée, les muons perdent de l’énergie par
ionisation mais interagissent très peu avec la matière. D’une énergie originelle de 6
GeV les muons ont une énergie d’environ 4 GeV au niveau de la mer. Les muons
furent découverts par Carl David Anderson (Nobel 1936) et Seth Neddermeyer en
1936, alors qu’ils travaillaient sur les rayons cosmiques.
La détection des muons cosmiques confirme la théorie de la relativité restreinte, car

dans le cadre de la cinématique Galiléenne un muon ne devrait jamais être observé
au niveau du sol.
Avec votre téléphone portable vous pouvez participer à la détection de

rayons cosmiques en utilisant l’application Deco disponible à cette adresse
http://wipac.wisc.edu/deco

1.4. Simultanéité

Figure 3. – Diagramme de Minkowski

On veut montrer qu’une transformation de Lorentz peut être visualisée par un

14



1.5. Causalité

diagramme d’espace-temps, ou diagramme de Minkowski, 1 représenté en figure 3.
Soit un référentiel R′ se déplaçant à une vitesse réduite β par rapport un référentiel
R, selon la figure 1.

a) Montrer que le diagramme de la figure 3 correspond bien à la représentation
des axes (Ox′,Ot′) dans le référentiel (Ox,Ot) après transformation de Lorentz.
Quelles sont les pentes des nouveaux axes ? Quelle est l’interprétation géomé-
trique ?

b) Identifier la trajectoire des rayons lumineux sur le diagramme. Vérifiez que l’équa-
tion définissant la trajectoire des rayons lumineux est invariante sous transforma-
tion de Lorentz.

c) Quelles sont les lignes de simultanéité dans chacun des référentiels ?

d) Montrez que les transformations de Lorentz ne préservent pas la chronologie des
événements. (La causalité est bien sûr préservée.)

Le diagramme de Minkowski ne traite pas symétriquement les deux référentiels R et
R′, et les unités de longueur sur les axes des deux diagrammes ne sont pas identiques.
Ce problème est dû à une représentation euclidienne d’une géométrie hyperbolique.
Nous allons voir comment palier à ces défauts.

e) Montrez que l’unité de longueur de diagramme R et reliés à celle du diagramme
R′ par le facteur d’échelle

ε =

√
1 + β2

1− β2
. (6)

f) En déduire par une construction graphique la relation de dilatation des durées
entre les deux référentiels.

1.5. Causalité

1.5.1. Exercice

Le diagramme de la figure 4 représente les cônes de lumière passé et futur d’un
observateur situé à l’origine.

a) Vérifier l’interprétation de ces cônes en montrant (graphiquement) que tout évé-
nement dans le futur (ou le passé) de l’observateur situé à l’origine sont contenus
dans les cônes.

1. Ces diagrammes ont été introduits par Hermann Minkowski en 1908. Hermann Minkowski
(1864 - 1909) est un mathématicien allemand. Il enseigna à Albert Einstein lors de la scolarité de
celui-ci à l’École Polytechnique Fédérale de Zürich entre 1896 et 1900.
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1. PC 1 : Transformations de Lorentz

futur

présent

passé

Figure 4. – Diagramme de causalité représentant les cônes de lumières passé et futur
d’un observateur situé à l’origine.

Un tachyon est une particule hypothétique qui peut se déplacer plus vite que la
vitesse de la lumière.

b) En utilisant la formule pour l’énergie E = γmc2, conclure que la masse au repos
d’un tachyon est imaginaire.

On considère maintenant un observateur R′ évoluant à une vitesse réduite β′ < 1
selon l’axe (Ox) du référentiel du laboratoire R. Après un temps t′, il émet un signal à
une vitesse réduite β. Dès réception du signal un observateur fixe attaché au référentiel
R émet un signal à une vitesse réduite β vers R′. On supposera que l’origine du
référentiel R correspond au moment de réception du signal.

c) Déterminer le temps de réception tréception du signal de réponse dans le référentiel
R′

d) Étudiez le comportement du temps de réception en fonction des vitesses β du
signal et de la vitesse β′ de l’observateur en mouvement.

i) Que se passe-t-il pour un signal avec une vitesse inférieure à celles de la lumière
β < 1 ?

ii) Que se passe-t-il pour un signal évoluant à la vitesse de la lumière β = 1 ?

iii) Que se passe-t-il dans le cas d’un signal tachyonique avec β > 1. Montrer qu’il
existe une configuration des vitesses β et β′ telle que tréception < 0. Quelle est
l’interprétation de ce résultat ?

1.5.2. Contexte physique

La propagation de particules à des vitesses supérieures à celle de la lumière n’est pas
interdite par le formalisme mathématique. La causalité est une hypothèse physique
qui doit être imposée.
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1.5. Causalité

La théorie impose que tout signal physique se propage à une vitesse inférieure au
paramètre limite c qui peut différer de la vitesse de la lumière dans un milieu différent
du vide. Par exemple l’effet Tcherenkov responsable de la couleur bleu des piscines des
réacteurs nucléaires est due à un flash de lumière provoqué par une particule chargée
se déplaçant dans un milieu avec une vitesse supérieure à la vitesse de la lumière dans
ce milieu, mais avec une vitesse inférieure à c.

Depuis 1983, la vitesse de la lumière est fixée à la valeur c = 299 792 458m/s par
le Bureau international des poids et mesures. L’unité de mètre est obtenue à partir
de la mesure de la seconde et la vitesse de la lumière. Grâce aux progrès en physique
atomique, la seconde est définie comme « la durée de 9 192 631 770 périodes de la
radiation correspondant à la transition entre les niveaux hyperfins F = 3 et F = 4 de
l’état fondamental 6S

1
2 de l’atome de césium 133 ». Ceci permet une détermination

de l’unité de longueur plus précise qu’avec un mètre étalon dont la longueur varie
selon les conditions extérieures.
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2. PC 2 : Composition des vitesses et
aberration relativiste

Relativité restreinte (PHY 431)
Pierre Vanhove

PC du 18 novembre 2014

2.1. Rappel de cours

On considère un référentiel R′ se déplaçant avec une vitesse uniforme ~v = ~βc
par rapport à un autre référentiel R. Le vecteur position ~r peut être décomposé
en composantes parallèle à ~β, ~r‖ := (~r · ~β) ~β/~β2 et une composante orthogonale
~r⊥ := ~r − ~r‖. Cette décomposition donne implicitement un choix d’axe de telle sorte
que la transformation de Lorentz s’écrit maintenant

ct′ = γ (ct− ~β · ~r) ,
~r ′‖ = γ (−~βct+ ~r‖) (1)

~r ′⊥ = ~r⊥ .

Si le mouvement se fait selon l’axe (Ox) la transformation de Lorentz prend la forme
matricielle 



ct′

x′

y′

z′


 =




coshφ(v) − sinhφ(v) 0 0
− sinhφ(v) coshφ(v) 0 0

0 0 1 0
0 0 0 1







ct
x
y
z


 ; (2)

avec la rapidité φ(β) donnée par

coshφ(β) = γ(β) =
1√

1− β2
; sinhφ(β) = γ(β)β; tanhφ(β) = β . (3)

2.2. Composition des vitesses

On considère deux référentiels R et R′ en mouvement uniforme relatif à la vitesse
~vR′/R = c~βR′/R. Soit un mobileM en mouvement avec une vitesse ~vM/R′ = c~βM/R′
arbitraire par rapport au référentiel R′. On suppose que les axes de R′ sont parallèles
à ceux de R.

a) On suppose que le mouvement du référentiel R′ se fait selon l’axe (Ox) du référen-
tiel R. Donnez l’expression de la vitesse ~vM/R = c ~βM/R du mobile par rapport
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2. PC 2 : Composition des vitesses et aberration relativiste

au référentiel R.

b) La rapidité φ(vR′/R) est définie par tanhφ(vR′/R) = βR′/R = vR′/R/c.
Montrer que la rapidité est additive par composition des vitesses.

c) Exprimer le facteur kR′/R =
√

(1 + βR′/R)/(1− βR′/R) de l’effet Doppler relati-
viste en fonction de la rapidité. En déduire le comportement de k sous la compo-
sition des vitesses.

d) Généraliser au cas où la vitesse relative des deux référentiels est arbitraire.

e) Vérifier que si le mobile M se déplace à la vitesse de la lumière par rapport R′
alors il se déplace aussi à la vitesse de la lumière par rapport à R.

2.3. Effet d’aberration relativiste

2.3.1. Effet torche

L’effet torche est un effet d’aberration des rayons lumineux conséquence curieuse
de la relativité restreinte. L’image d’un objet est déformée par suite du mouvement
de l’observateur.
Un observateur O situé à l’origine du référentiel R voit une source (supposée ponc-

tuelle) se déplacer à la vitesse v = c β le long de (Ox). La source rayonne uniformément
dans son référentiel propre.

a) Si l’observateur O reçoit les rayons lumineux sous un angle θ par rapport à l’axe
(Ox). Déterminer l’expression l’angle θ en fonction de l’angle θ′ dans le repère en
mouvement de la source.

b) Considérer les limites Galiléenne v/c� 1, et ultra-relativistes v/c / 1.

2.4. Le paradox du mètre incliné

Figure 1. – À gauche la règle est dans le référentiel du laboratoire. À droite la règle
est dans le référentiel du mobile.
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2.5. Effet Doppler : Un conducteur relativiste

Une règle de 1 mètre de long parallèle à l’axe (Ox) se déplace dans la direction de
l’axe (Oy) du système du laboratoire à la vitesse βy. On considère un mobile évoluant
à la vitesse β selon l’axe (Ox) (voir figure 1). Dans le système du mobile, la rège est
inclinée vers le haut par rapport à la partie positive de l’axe (Ox′).

a) Expliquer ce phénomène sans écrire d’équations. On admettra que le centre de la
règle passe au point x = y = x′ = y′ = 0 à l’instant t = t′ = 0.

b) Calculer l’angle d’inclinaison φ′ du mètre sur l’axe (Ox′) du référentiel du mobile

On considère maintenant que cette règle glisse le long de l’axe (Ox) du système
du laboratoire et se rapproche de l’origine à la vitesse βr. Une plaque très mince et
parallèle au plan (xOz) du système du laboratoire se déplace vers le haut dans le
sens de l’axe (Oy) à la vitesse βy. Elle est percée d’un trou circulaire d’un mètre de
diamètre centré sur l’axe (Oy). Le centre de la règle se trouve à l’origine du système du
laboratoire au moment même, mesuré dans le même système, où la plaque ascendante
se trouve à y = 0.

Comme le mètre subit une contraction de Lorentz dans le système du laboratoire,
il passera facilement au travers de l’ouverture de la plaque. Il n’y aura donc aucune
collision entre eux et ils poursuivront leurs mouvements respectifs.
Mais le système du mobile où il se trouve au repos, le mètre ne subit aucune

contraction et c’est au contraire le trou de la plaque qui subit une contraction de
Lorentz. Le mètre qui a toute sa longueur ne pourra donc pas passer au travers du
trou de la plaque qui s’est contracté. Il devrait se produire une collision.

c) Résoudre se paradoxe en expliquant si il y aura collision ou pas.

2.5. Effet Doppler : Un conducteur relativiste

Une anecdote apocryphe raconte l’histoire d’un physicien arrêté pour ne pas avoir
respecté un feu rouge. Pour éviter de payer une amende le physicien explique que le
feu lui est apparu de couleur verte à cause de l’effet Doppler. Après réflexion le policier
déchira la contravention pour non respect d’un feu rouge en une contravention pour
excès de vitesse.
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2. PC 2 : Composition des vitesses et aberration relativiste

a) À quelle vitesse devait conduire le physicien pour que le feu rouge lui apparaisse
vert ? La longueur d’onde d’une lumière rouge λrouge ∼ 700 nm et d’une lumière
verte λvert ∼ 546 nm (rappel 1 nm= 10−9 m et c = 299792458m/s).

2.6. Contexte physique : Aberration stellaire

Les effets d’aberration relativiste ont été calculés par Einstein en 1905
pour la première fois dans son article « Zur Elektrodynamik beweg-
ter Körper », publié dans Annalen der Physik, vol. 17, 30 juin 1905,
p. 891-921. Le texte intégral en allemand est accessible à l’adresse
http://www.physik.uni-augsburg.de/annalen/history/einstein-papers/1905_17_891-921.pdf.
Une traduction en anglais est accessible à cette adresse
http://www.fourmilab.ch/etexts/einstein/specrel/specrel.pdf.

Une conséquence intéressante de la formule d’aberration est le mouvement apparent
des étoiles dans le ciel avec une période de six mois. Cet effet n’est pas due à la
différence de position de la Terre par rapport aux étoiles, car la taille de l’orbite
terrestre est négligeable en comparaison à la distance aux étoiles, mais c’est un effet
de relativité restreinte due au mouvement de la Terre autour du Soleil. Bien sûr dans
le cas du mouvement de la Terre autour du Soleil, le vitesse est de l’ordre de 30 km/s
et l’effet est purement non-relativiste.
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3. PC 3 : Principes variationnels,
équations d’Euler- Lagrange

Relativité restreinte (PHY 431)
Pierre Vanhove

PC du 25 novembre 2014

3.1. Rappel de cours

Un système de mécanique classique est caractérisé par une configuration ~q évoluant
dans un espace C.
Par exemple, si le système décrit des particules macroscopiques, une configuration

est un vecteur ~q = (q1, · · · , qm) qui décrit l’état du système. Par exemple, pour
deux points matériels évoluant dans l’espace R3 la configuration est donnée par les
coordonnées des deux points matériels ~q = (x1, y1, z1, x2, y2, z2) ∈ C ∼= R3 ×R3. Pour
une particule contrainte à évoluer sur une sphère S2 de rayon x2

1 + x2
2 = R2 alors

~q = (x1, x2) ∈ C ∼= S2.
Sous l’effet de forces, le système évolue dans l’espace des configurations C. C’est

alors un système dynamique.
On considère un système dont le comportement peut être décrit par la trajectoire

~q(s) où qi(s) sont des coordonnées généralisées et s un paramètre curviligne. On note
~̇q := d~q/ds les vitesses généralisées. La fonction de Lagrange L (si elle existe) est une
fonction indépendante des coordonnées et des vitesses généralisées, L(~q, ~̇q, s).
Le principe de moindre action stipule que lorque le système suit les équations du

mouvement, l’action

S =

∫ fin

début
dsL(~q, ~̇q, s) (1)

est stationnaire vis-à-vis de toute variation de la trajectoire δ~q(s) qui ne change pas
les points de départ et de fin de la trajectoire.
Les équations du mouvement sont obtenues de la manière suivante : on définit le

moment généralisé (ou encore appelé moment conjugué) de la variable ~q par

~p :=
∂L
∂~̇q

. (2)

En composantes cette équation s’écrit

pi :=
∂L
∂q̇i

. (3)
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3. PC 3 : Principes variationnels, équations d’Euler- Lagrange

La donnée du vecteur configuration ~q et de son moment conjugué ~p fournit l’espace
des phases.
Les équations du mouvement s’écrivent alors

d~p

ds
=

d

ds

(
∂L
∂~̇q

)
=
∂L
∂~q

(4)

où le terme de gauche doit être compris comme une dérivée totale par rapport au
paramètre s. Ce sont les équations d’Euler-Lagrange.
La quantité

F i :=
∂L
∂qi

(5)

est appelée la force généralisée.

3.1.1. Multiplicateurs de Lagrange (constraintes globales)

Quand on doit faire une minimisation sous contraintes globales

Cj(~q(s), ~̇q(s)) = 0 (6)

on peut introduire un multiplicateur de Lagrange λj par contrainte, de telle sorte que
le Lagrangien prenne la forme,

L(~q(s), ~̇q(s), λj) = L0(~q(s), ~̇q(s)) +
∑

j

λj Cj(~q(s), ~̇q(s)) (7)

où L0 est le Lagrangien sans contrainte.
La solution du problème de minimisation est obtenue en écrivant les équation

d’Euler-Lagrange pour tout λj . Les valeurs de ces paramètres auxiliaires sont dé-
terminés a la fin en résolvant les constraintes Cj(~q(s), ~̇q(s)) = 0.

3.2. Quelques systèmes simples

3.2.1. Le pendule mobile

On considère un pendule de longueur l et de masse m2 suspendu à un point de
masse m1 qui se déplace horizontalement sur un rail (sans frottement). On note x
l’abscisse de m1 et ϕ l’angle du pendule avec la verticale. Écrire le lagrangien de ce
système.

3.2.2. Exemple du référentiel tournant

Le formalisme lagrangien permet d’aborder de façon élégante et efficace de nom-
breux problèmes d’optimisation et de mécanique analytique. Par exemple, le mou-
vement d’un objet ponctuel, libre, dans un repère tournant à vitesse angulaire ~Ω
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3.3. Temps propre et équations de Euler-Lagrange

constante. Le lagrangien est donné par 1

L =
m

2
~v2 +m~v ·

(
~Ω× ~r

)
+
m

2

(
~Ω× ~r

)2
, (8)

conduisant aux moments et forces généralisés suivants :

~p :=
∂L
∂~v

= m
(
~v + ~Ω× ~r

)
(9)

~F :=
∂L
∂~r

= m
(
~Ω× ~r

)
× ~Ω +m~v × ~Ω. (10)

La force généralisée est la somme de la contributions de la force centrifuge ~Fr =

m
(
~Ω× ~r

)
× ~Ω et la moitié de la Coriolis ~Fc = 2m~v × ~Ω.

Les équation du mouvement étant d~p/dt = ~F la force de Coriolis provient à parts
égales de ~̇p et de ~F . Souvent, les forces d’inertie se manifestent invariablement au tra-
vers des moments ou des forces généralisés, selon les coordonnées généralisées adop-
tées.

3.3. Temps propre et équations de Euler-Lagrange

On veut montrer que le mouvement rectiligne-uniforme entre deux événements A
et B rend extremum le temps propre écoulé entre ces deux événements. Pour cela on
considère l’action géodésique suivante

S =

∫ sB

sA

ηµν ẋ
µẋνds, (11)

avec ẋµ := dxµ/ds et où s est un paramètre le long de la courbe.

a) Écrire les équations d’Euler-Lagrange et en déduire le résultat cherché.

b) Sachant que le temps propre d’une particule est

(cdτ)2 = (cdt)2 − (d~x)2 (12)

obtenir le même résultat en calculant l’extrémum du temps propre intégré entre
l’instant initial et final.

1. Si le référentiel R′ est en rotation selon l’axe Oz par rapport au référentiel R alors ~Ω = Ω~ez
et ~r′ = (x cos(Ωt) +y sin(Ωt))~ex+ (−x sin(Ωt) +y cos(Ωt))~ey + z ~ez. Donc si ~v = d~r′/dt est la vitesse
dans le référentielR′ alors la vitesse par rapport au référentielR est ~V = ~v+~r×~Ω. Donc le lagrangien
de la particule libre en mouvement dans un référentiel en rotation est obtenue en substituant dans
le lagrangien L = m~V 2

2
l’expression pour la vitesse ~V .
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3.4. Formule de Beltrami

On considère une fonctionelle de la forme

U(y) =

∫ x1

x0

F (y(x), ẏ(x), x)dx (13)

où y est une fonction de x et ẏ := dy/dx. On cherche les configurations y(x) qui
rendent cette fonctionnelle extrémale, x0 et x1 étant fixées.

a) En étudiant la condition d’extrémalisation de cette fonctionelle déduire les équa-
tions d’Euler-Lagrange.

b) On suppose que F ne dépend pas explicitement de x (i.e. telle que ∂F/∂x = 0),
montrer que la quantité

E := ẏ
∂F

∂ẏ
− F (14)

est constante pour toute solution y du problème d’extrémalisation (formule de
Beltrami).

c) On considère une particule ponctuelle en mouvement unidimensionel dans un po-
tentiel V (x) indépendant du temps. Écrire le Lagrangien pour ce système et la
formule de Beltrami. Interpréter le résultat.

3.5. Brachistochrone

Figure 1. – Courbe brachistochrone, du grec « brakhisto » signifiant « le plus court »
et de « chronos » signifiant le temps.

On suppose qu’un objet ponctuel P , lâché du point A de coordonnées (xA = 0, zA =
h > 0) sans vitesse initiale, glisse le long d’un toboggan jusqu’au point B de coor-
données (xB = d > 0, zB = 0) (voir la figure 1).

a) Déterminer le temps de parcours T (z) comme fonctionnelle de la courbe z(x) du
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3.6. Caténoïde

toboggan

T (z) =

∫ d

0
f(z, ż) dx , (15)

avec ż := dz/dx. Pour cela on utilisera la théorème de conservation de l’énergie
du système.

b) Appliquer la formule de Beltrami pour déterminer la forme de la courbe. Pour cela
poser ż := dz/dx = tan(θ/2). On obtient un arc de cycloïde.

c) On place une particule en un point quelconque de la courbe trouvée et on la lache
sans vitesse initiale. Montrer que le temps mis pour atteindre le point le plus bas
de la courbe est indépendant du point de départ. On dit que la courbe trouvée est
tautochrone.

3.6. Caténoïde

Figure 2. – Forme d’une bulle de savon entre deux cercles. La forme prise par la
bulle est une caténoïde du latin Catena pour chaîne.

On recherche la forme d’une bulle de savon tendue entre deux cercles de rayon R
placés l’un au dessus de l’autre (voir Fig. 2). À cause de la tension superficielle la
forme prise par la bulle est telle que la surface totale est minimale.

a) Montrer que l’action de ce système peut s’écrire,

S = 2π

∫ h

−h
r(z)

√
1 + ṙ(z)2 dz , (16)

où ṙ(z) := dr(z)/dz.

b) Écrire l’équation d’Euler-Lagrange correspondante. Remarquer que r(z)/(1 +
ṙ2(z))1/2 est conservée.
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c) Montrez que la solution est donnée par r = α cosh((z−β)/γ) où l’on déterminera
les constantes α, β et γ en fonction des données du problème.

3.7. Contexte historique

En juin 1696 Bernoulli a mis au défi les mathématiciens européens de résoudre
le problème de la brachistochrone. Il accorda un délai de six mois pour recevoir la
solution, et promis de publier sa propre solution si aucune solution ne lui est commu-
niqué. Le délai des six mois écoulés sans solutions reçues, Bernoulli reçu une lettre de
Leibniz indiquant être proche d’une solution et demandant un délai supplémentaire
jusqu’à Noël, afin que les mathématiciens français et italiens, informés plus tard, ne
puissent pas se plaindre du délai trop court accordé. Bernoulli accepta la suggestion
et annonce un délai supplémentaire pour ceux qui n’auraient reçu l’annonce de juin
1696.
Le 29 janvier 1967 à 16h00, Isaac Newton (1643-1727) de retour du « Royal Mint »

trouva une copie du problème adressée par Bernoulli. Newton travaillât jusqu’à 4h00
du matin pour résoudre le problème. Il envoyât sa réponse à Montague, le président
de la société Royale, pour que sa solution soit publiée anonymement. La solution de
Newton, indique que la courbe est celle d’une cycloïde et fournit une méthode pour
la déterminer.
Leibniz et le Marquis de l’Hôpital résolurent le problème de la brachistochrone.

Bernoulli pût identifier Newton comme l’auteur de la solution anonyme. Il déclara
tanquam ex ungue leonem, dont la traduction littérale est « on reconnaît le lion à sa
griffe », qui signifie que l’on reconnait l’artiste à sa « patte ».

Vous pouvez lire l’histoire du calcul des variations et du problème de la Brachis-
tochrone dans cet article de James Ferguson “A Brief Survey of the History of the
Calculus of Variations and its Applications” http://arxiv.org/abs/math/0402357.
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4. PC 3 : Espace–temps et formalisme
quadri-dimensionnel

donnée en 2012 et 2013
Relativité restreinte (PHY 431)

Pierre Vanhove
PC du 25 novembre 2014

4.1. Rappel de cours

4.1.1. Produit scalaire, élément de longueur

Dans le cadre de la relativité, ni l’espace ni le temps ne sont absolus. L’espace–temps
est le contexte naturel où les événements sont repérés par quatre coordonnées, com-
posantes d’un quadrivecteur, le quadrivecteur position

X :=




x0

x1

x2

x3


 =




ct
x
y
z


 . (1)

Si nous dénotons par xµ avec µ = 0, 1, 2, 3 les composantes de X, on souhaite que X =∑3
µ=0 x

µ eµ aient les coordonnées données dans (1) selon une base {eµ, µ = 0, 1, 2, 3}.
Nous utiliserons la règle de sommation d’Einstein sur les indices répétés X = xµ eµ.

Seront sommés des indices répétés en « haut » et en « bas ».
Si X et Y sont deux quadrivecteurs de position le produit scalaire s’écrit

X ·Y = xµyν eµ · eν , (2)

ce produit scalaire devant être égale à l’intervalle relativiste tel que

X ·X = (ct)2 − x2 − y2 − z2 = x0x0 − ~x · ~x =

3∑

µ=0

(xµ)2 (3)

il faut donc que {eµ, µ = 0, 1, 2, 3} soit une base orthonormée pour le produit scalaire
quadri-dimensionnel :

eµ · eν = ηµν (4)

où ηµν sont les composantes du tenseur métrique, diagonal, de signature (+,−,−,−).
(Nous aurions aussi pu définir le produit scalaire avec la signature (−,+,+,+)).
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4.1.2. Vecteurs et formes linéaires

Une quadriforme linéaire F applique un quadrivecteur X sur un réel F(X). Elle
peut être développée dans une base {θµ} :

F = fµθ
µ . (5)

La base {θµ, µ = 0, 1, 2, 3} duale de {eµ} si

θµ(eν) = δµν . (6)

Dans une telle base
F(X) = fµx

µ. (7)

4.1.3. Correspondance vecteur-forme

Le tenseur métrique ηµν permet d’établir une correspondance (un isomorphisme)
entre les vecteurs et les formes linéaires : à chaque vecteur X de composantes xµ

correspond une forme Q de composantes qµ telles que

qµ = ηµνx
ν ⇐⇒ xµ = ηµνqν , (8)

ainsi
Q = qµθ

µ = xµ eµ = X . (9)

La métrique inverse ηµν est telle que

ηνλη
λµ = δµν . (10)

Si {xµ} = {x0, ~x} sont les composantes X, les composantes{qµ} de Q seront {qµ} =
{xµ} = {x0,−~x}.
À partir de maintenant nous dénoterons les éléments de la base duale eµ := θµ.

Aucun confusion n’est possible car la nature la base est indiquée par la position de
l’indice.

4.1.4. Tenseurs

Un tenseur T, p fois contravariant et q fois covariant, est un objet géométrique
défini dans un espace linéaire, produit direct de p espaces de vecteurs et q espaces de
formes linéaires. Il s’exprime dans la base naturelle induite par {eµ} et {eµ} comme
suit :

T := T
µ1···µp
ν1···νq eµ1 ⊗ · · · ⊗ eµp ⊗ eν1 ⊗ · · · ⊗ eνq (11)

Le tenseur métrique permet de « monter ou descendre » des indices, c’est-à-dire de
relier des tenseurs de rang (p, q) à des tenseurs de rang (p+ 1, q− 1) ou (p− 1, q+ 1).
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4.1. Rappel de cours

4.1.5. Transformation de Lorentz

Une transformation de Lorentz est un changement de base

{eµ} → {e′ν = eµ(Λ−1)µν} (12)

au cours duquel le produit scalaire est inchangé :

eµ · eν = ηµν . (13)

En conséquence,
ηµν = ηρσ ΛρµΛσν (14)

Cette relation définit le groupe des transformations d’invariance de l’élément ds2 =
(ct)2 − (~x)2.
Au cours d’un changement de base, {eµ} → {e′ν = eµ(Λ−1)µν}, la base duale se

transforme au moyen de Λ : {eµ} → {e′ν = Λνµe
µ}. On parle de transformation

contravariante par opposition à la transformation covariante de la base {eµ}. Tout
objet tensoriel est invariant mais ses composantes se transforment. Par exemple, les
composantes d’un quadrivecteur se transforment de manière à satisfaire

X = eµx
µ = e′νx

′ν (15)

où x′ν = Λνµx
µ ; de même pour une forme avec f ′ν = fµ(Λ−1)µν .

La matrice Λ(~β) d’une transformation de Lorentz générale a pour composantes

Λ0
0 = γ (16)

Λ0
i = −γβi, i = 1, 2, 3 (17)

Λi0 = = −γβi, i = 1, 2, 3 (18)

Λij = δij +
γ

γ + 1
βiβj . (19)

On en déduit alors l’action de cette transformation de Lorentz sur les composantes
du quadri-vecteur X : x′µ = Λ(~β)µνx

ν

x′0 = γ(x0 − ~β · ~x)

~x′ = ~x+ γ~β

(
γ

γ + 1
~β · ~x− x0

)
(20)

ou encore la relation inverse xµ = Λ(−~β)µνx
′ ν

x0 = γ(x′0 + ~β · ~x′)
~x = ~x′ + γ~β

(
γ

γ + 1
~β · ~x′ + x′ 0

)
(21)

γ = 1/

√
1− ~β2 est le facteur de Lorentz de cette transformation, ~v = ~β c étant la
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4. PC 3 : Espace–temps et formalisme quadri-dimensionnel

vitesse relative des deux référentiels d’inertie où les composantes de X sont mesurées.

4.1.6. Groupe de Lorentz

De la même manière que les rotations sont les transformations qui préservent la
norme euclidienne, les transformations de Lorentz sont celles qui préservent l’invariant
de Lorentz.
En notation matricielles si η est la matrice de composantes ηµν nous avons

RRT = I⇐⇒ R ∈ SO(3) pour les rotations (22)
Λ ηΛT = η ⇐⇒ Λ ∈ SO(1, 3) pour les transformations de Lorentz . (23)

Le groupe SO(1, 3) a quatre composantes caractérisées par det Λ = ±1 et (Λ0
0)2 =

1+
∑3

k=1(Λk0)2 ≥ 1. Les transformations de déterminant +1 forment un sous-groupe
préservant l’orientation d’espace-temps. C’est le sous-groupe SO+(1, 3) des transfor-
mations propres. Les transformations de Lorentz telles que Λ0

0 ≥ 1 forment le sous-
groupe orthochrone des transformations préservent le sens d’écoulement du temps. Il
est dénoté SO+↑(1, 3).

4.1.7. Temps propre

Le temps coordonnée est relatif et dépend du référentiel choisi. On définit le temps
propre, invariant et attaché à chaque observateur ou mobile. L’élément de temps
propre le long d’une ligne d’univers est

dτ2 =
ds2

c2
= dt2 − d~x2

c2
. (24)

Si γ = 1/

√
1− ~β2 est le facteur de Lorentz en chaque point de cette ligne, l’élément

de temps propre est dτ = dt/γ. Le temps total mesuré par le mobile le long de sa
ligne d’univers, pour relier un point d’espace en t1 à un autre point en t2 est

δτ =

∫ t2

t1

dt

γ
(25)

Comme γ ≥ 1 ce temps est inférieur ou égal à δt = t2 − t1, l’inégalité étant saturée
lorsque le mobile est au repos.

4.2. Quadri-vecteurs vitesse et accélérations

Le quadri-vecteur accélération A est défini comme la dérivée du quadri-vecteur
vitesse V par rapport au temps propre τ : A = dV/dτ .
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4.3. Cylindre en rotation

a) Donner l’expression de la quadri-vitesse V en fonction de la vitesse spatiale ordi-
naire dans le référentiel R. Calculer la norme du quadri-vecteur vitesse.

b) Donner alors l’expression de l’accélération dans R. Calculer le produit scalaire
entre les quadri-vecteurs vitesse et accélération.

c) On définit le quadri-vecteur d’énergie-impulsion P = mV. Donner les composantes
de ce quadri-vecteur, ainsi que P ·P. En déduire l’expression pour l’énergie d’une
particule massive relativiste en mouvement.

d) Que déduire que l’orthogonalité de l’accélération et du quadri-vecteur énergie-
impulsion ?

4.2.1. Contexte historique

La formule E = mc2, la plus célèbre de la physique moderne du XXème siècle.
Elle traduit l’équivalence entre l’énergie et la masse. Albert Einstein a incorrectement
démontré cette formule dans son article « Ist die Trägheit eines Körpers von dessen
Energieinhalt abhängig ? » (A. Einstein 1905 Annalen der Physik 18 : 639–643) Ce fut
Max Planck qui établit correctement cette formule pour la première fois (M. Planck
1908 « Zur Dynamik bewegter Systeme », Annalen der Physik 26 1-34).

4.3. Cylindre en rotation

On considère un cylindre de rayon ρ et de longueur L en rotation uniforme ω
autour de son axe (Ox) dans le repère inertiel R. On considère un référentiel R′ en
mouvement uniforme v = β c selon l’axe (Ox).

a) Montrer que dans R′ le cylindre apparaît comme un cylindre de rayon ρ mais de
longueur L/γ.

b) On suppose que la surface du cylindre on été marqués des points de couleur alignés
le long du cylindre. Montrer que dans R′ le cylindre apparaît tordu d’un angle
α = γβω/c par unité de longueur propre.
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5. PC 4 : Invariances et lois de
conservation ; théorie lagrangienne
relativiste

Relativité restreinte (PHY 431)
Pierre Vanhove

PC du 2 décembre 2014

5.1. Lagrangien du champ électromagnétique

On considère un tenseur antisymétrique F deux fois contravariant Fµν dont les
composantes s’expriment en fonction de celles d’un quadri-vecteur A de composantes
Aµ selon Fµν := ∂µAν − ∂νAµ.
a) Montrer que l’on a

∂ρFµν + ∂µF νρ + ∂νF ρµ = 0 . (1)

Soit un espace Euclidien tridimensionnel équipé du produit scalaire avec une si-
gnature (−,−,−). Ainsi le produit scalaire de deux vecteurs ~v et ~w de composantes
contravariantes respectives vi et wi s’écrit ~v · ~w = −∑3

i=1 v
iwi.

b) Écrire les composantes covariantes wi en terme des composantes contravariantes
wi. Réécrire le produit scalaire ~v · ~w en utilisant les composantes contravariantes
de ~v et les composantes covariantes de ~w.

On définit sur cet espace-euclidien un tenseur deux fois contravariant f ij = ∂ivj −
∂jvi, puis considère le tenseur complètement antisymétrique εijk tel que ε123 = 1 =
−ε213 = −ε321. On définit ensuite le tenseur wi (une fois covariant) wi = 1

2εijkf
jk.

c) Montrer que wi =
(
~∇× v

)
i
. On rappelle que ~∇ := (∂/∂xi = ∂i = −∂i).

Les composantes du champ électromagnétique ~E = (Ex, Ey, Ez) =
(−Ex,−Ey,−Ez) et ~B = (Bx, By, Bz) = (−Bx,−By,−Bz) sont reliées à celles du
tenseur Fµν de la façon suivante

Fµν =




0 −Ex/c −Ey/c −Ez/c
Ex/c 0 Bz −By
Ey/c −Bz 0 Bx
Ez/c By −Bx 0


 . (2)

C’est le tenseur de Faraday.
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d) Montrer que les équations (1) conduisent aux équations de Maxwell homogènes

~∇× ~E = −∂
~B

∂t
(3)

~∇ · ~B = 0 (4)

On utilisera que ∂0 := ∂/(c∂t) = ∂0 et la question précédente en démontrant que
Bi = 1

2εijkF
jk.

e) Vérifier que les champs ~E et ~B dérivent de potentiels

~B = ~∇× ~A (5)

~E = −~∇φ− ∂ ~A

∂t
(6)

f) Montrer que ces équations sont invariantes sous les transformations suivantes

~A → ~A− ~∇χ (7)

φ → φ+
∂χ

∂t
(8)

Pour fixer cette ambiguïté on impose la condition de jauge suivante

1

c2

∂φ

∂t
+ ~∇ · ~A = 0 . (9)

On considère maintenant le Lagrangien du champ électromagnétique en présence
de matière, tel que l’action prenne maintenant la forme

S =

∫ (
− 1

4µ0
FµνFµν − %φ+ ~ · ~A

)
d3xdt (10)

g) Vérifier l’expression de FµνFµν en fonction de ~E et ~B :

FµνFµν = −2

(
~E2

c2
− ~B2

)
. (11)

h) En utilisant les expressions (5) et (6), écrire les équations de Euler-Lagrange pour
les champs φ et ~A.

i) Comment se traduit l’invariance de jauge donnée dans les équations (7) et (8) pour
le Lagrangien ?
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5.2. Lagrangien d’une particule dans un champ
électromagnétique

On considère une particule dans un champ électromagnétique extérieur, dont l’ac-
tion est donnée par

S = −mc2

∫ t2

t1

√
1− ~v2

c2
dt−

∫ t2

t1

q(φ− ~v · ~A)dt (12)

a) Écrire les équations d’Euler-Lagrange dérivant de cette action. On utilisera que
~u× (~v × ~w) = (~u · ~w)~v − (~u · v) ~w, ainsi que les relations (3) et (4).

b) En utilisant la relationmc2 = (E/c)2−~p2, déduire l’équation satisfaite par l’énergie
E = γmc2 de la particule ?

c) On introduit le quadri-vecteur énergie-impulsion P de composantes (E/c, γm~v) où
E = γmc2. Écrire les équations du mouvement en utilisant les composantes du
quadri-vecteur P, du quadri-tenseur F définit dans l’équation (2). On utilisera le
temps propre τ tel que dt = γ dτ et le quadri-vecteur vitesse V = γ (c,~v).

d) Montrer que l’on peut exprimer l’action (12) sous une forme explicitement inva-
riante de Lorentz avec des quadri-vecteurs.
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6. PC 5 : Mécanique relativiste

Relativité restreinte (PHY 431)
Pierre Vanhove

PC du 9 décembre 2014

6.1. Rappel de cours

Le quadrivecteur énergie–impulsion d’une particule libre de masse m et de quadri-
vitesse V est défini par

P = mU , (1)

avec U = γ (c,~v) dans un référentiel d’inertie. Dans un référentiel d’inertie, les com-
posantes de P sont (E/c, ~p), où E = γ mc2 est l’énergie totale de la particule et ~p est
son impulsion. L’énergie cinétique

T = E −mc2 (2)

car mc2 est l’énergie au repos. La contrainte physique U2 = c2 implique P2 = m2c2

qui, en terme de composantes, s’écrit :

E2 = m2c4 + ~p2c2 . (3)

Cette relation porte le nom de relation de couche de masse. L’énergie cinétique est
donnée par

T = mc2

(√
1 +

~p2

m2c2
− 1

)
. (4)

En cinématique relativiste nous avons (pour m 6= 0)

E = γmc2 , ~p = γm~v (5)

et par conséquent

~v E = ~pc2 =⇒ E =

√
~p2

√
~v2
c2. (6)

Cette dernière relation reste vraie lorsque ~v2 = c2, auquel cas E =
√
~p2 c. De la

relation de couche de masse on déduit alors que m = 0 pour ces particules. Pour une
particule de masse nulle P = E

c (1, ~n) où ~n est un vecteur unité selon la direction du
mouvement.
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Au cours d’un processus de collision entre particules

a(1) + a(2) → b(3) + b(4) + · · · , (7)

l’énergie et l’impulsion totales sont conservées. Ceci se formule comme suit :

Ptot a :=
∑

i

Pa(i)
=
∑

i

Pb(i) := Ptot b. (8)

Cette conservation est valable dans tous les référentiels d’inertie.
En géométrie minkowskienne, les quadrivecteurs satisfont une inégalité triangulaire.

Pour tout couple de quadrivecteurs P1 et P2, du genre temps, orientés tous deux vers
le futur (ou tous deux vers le passé), il vient :

‖P1 + P2‖ ≥ ‖P1‖+ ‖P2‖ . (9)

L’inégalité est stricte si un des deux quadrivecteurs (et seulement un) est de genre
lumière.

6.2. Théorème de la composante nulle

a) Montrez que si un quadri-vecteur A a sa composante temporelle nulle dans tous
les référentiels Lorentzien alors le quadri-vecteur est nul.

b) Montrer que si P est un quadri-vecteur de genre temps P · P > 0 alors il existe
un référentiel où ses composantes sont données par P = (P 0,~0). Lorsque P est
le quadri-vecteur énergie-impulsion d’une particule, ce référentiel est celui où la
particule est au repos.

c) Soit ∆P la différence de la somme des quadri-vecteur énergie-impulsion des par-
ticules initiales et finales ∆Ptot =

∑
f finalesP

f −∑i initialP
i. La composante

temporelle de ce quadri-vecteur est ∆E = Efinale−E initiale la différence entre l’éner-
gie finale et initiale. Montrer que la conservation de l’énergie ∆E = 0, implique la
conservation de la quantité de mouvement ∆~p.

Rappel : Si (xµ) et (x′µ) sont les composantes d’un quadri-vecteur X exprimées
dans les référentiels R et R′ tels que x′µ = Λ(β)µν x

ν alors

x0 = γ(x′0 + ~β · ~x′), ~x = ~x′ + γ~β

(
γ

γ + 1
~β · ~x′ + x′ 0

)
. (10)

γ = 1/

√
1− ~β2 est le facteur de Lorentz de cette transformation, ~v = ~β c étant la

vitesse relative de R′ par rapport à R.
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6.3. Masse invariante et référentiel du centre de masse

Considérons un système de particules libres de masses mi.

a) Démontrer l’inégalité triangulaire (9). En déduire que le quadri-vecteur énergie–
impulsion total satisfait √

P2
tot ≥

∑

i

mic. (11)

On définit généralement l’invariant relativiste suivant :

s = ‖Ptot‖2 . (12)

b) Que vaut s pour une collection de particules au repos les unes par rapport aux
autres ?

On considère deux particules de masses m1 et m2. On suppose que la particule 2
vient percuter la particule 1 au repos, et que les deux particules forment un état lié
de masse mt.

c) Exprimer l’énergie (totale) de la particule 2, dans le référentiel du laboratoire, en
fonction de mt et des masses m1 et m2 des particules.

d) Donner l’énergie totale du système initial. Donner l’expression du facteur γCM en
fonction des masses. Considérer la limite non relativiste et interpréter le résultat.

Dans le cas où Ptot est du genre temps c’est-à-dire ‖Ptot‖2 > 0, on définit le référentiel
du centre de masse en imposant ~pCM

tot = 0.

e) Déterminer la vitesse ~vCM = ~β CM c, du référentiel du centre de masse dans le
référentiel du laboratoire comme fonction des composantes du quadrivecteur Ptot.

f) Retrouver l’expression du facteur γCM pour le système à deux particules de la
question précédente.

6.4. Effet Compton

On considère la diffusion de rayon X sur du graphite. On considère un électron
e− au repos percuté par un photon γ. Après le choc le photon et l’électron diffusent.
Nous avons la réaction suivante

γ + e− → γ + e− (13)

a) Écrire la relation de conservation des quadri-vecteurs énergie-impulsion
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Figure 1. – Effet Compton de diffusion d’un photon sur un électron

b) On dénote par Pi
γ et P

f
γ et Pi

e− et Pf
e− les quadri-vecteurs énergie-impulsion initial

et final du photon, respectivement de l’électron e−. Calculer

(Pi
γ −Pf

γ)2 (14)

en fonction de l’angle de diffusion du photon

c) Calculer
(Pi

e− −Pf
e−)2 (15)

en fonction des énergies des photons. Pour cela on utilisera la relation de conser-
vation de l’énergie.

d) En déduire la relation entre l’angle de diffusion et la différence des longueur d’ondes
des photons initial et final. On rappelle que E = hc/λ.

Pour une source de Césium 137 émettant des photons d’énergie E iγ = 662KeV ,
l’énergie des photons finaux est maximale, lorsque λf est minimale. Ce qui est réalisé
pour θ = π. On trouve alors Efγ = 184.35KeV .

6.4.1. Contexte historique

On remarque l’apparition de longueur caractéristique

λe =
h

mec
= 2.4 10−12m, (16)

qui représente la longueur d’onde de Compton de l’électron. Pour observer la diffusion
des photons sur des électrons il faut donc envoyer des rayons X. C’est ce que Arthur
Holly Compton a réalisé in 1923 à l’université de Washington à Saint Louis (USA).
Cette expérience a été récompensée par le prix Nobel de physique en 1927.
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6.4. Effet Compton

Cet effet est important car il démontre que les propriétés lumière ne peuvent pas être
seulement comprise en considérant la lumière comme une onde électromagnétique. La
théorie classique de diffusion des ondes électromagnétique donnée par la diffusion de
Thompson, ne peut pas expliquer le décalages des longueurs d’onde à faible intensité.
La lumière doit donc se comporter comme une particule pour expliquer l’observation
de l’effet Compton aux faibles intensités.
C’est cette observation qui a convaincu Compton que la lumière est composée de

corpuscules (les quantas) dont l’énergie est proportionnelle à la fréquence, comme
prédit par Albert Einstein.
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6. PC6 : Relativité et
électromagnétisme

Relativité restreinte (PHY 431)
Pierre Vanhove

PC du 16 décembre 2014

6.1. Loi de transformations

On considère le référentiel du laboratoire R et un référentiel R′ en mouvement
uniforme de vitesse ~v = c ~β par rapport à R.
Grâce aux lois de transformation des tenseurs on peut montrer les lois de transfor-

mation des champs ~E et ~B

~E′‖ = ~E‖, ; ~E′⊥ = γ
(
~E⊥ + c ~β × ~B⊥

)
, (1)

~B′‖ = ~B‖, ; ~B′⊥ = γ

(
~B⊥ −

1

c
~β × ~E⊥

)
. (2)

où ~w‖ est la projection du vecteur ~w selon la direction du mouvement relatif des deux
référentiels, et ~w⊥ la composante orthogonale au mouvement.

a) Rappeler d’où viennent les lois de transformations des champs électriques et ma-
gnétiques.

b) Rappeler pourquoi les deux combinaisons ~E2/c2− ~B2 et ~E · ~B sont invariantes par
transformation de Lorentz.

c) Quelles sont les conditions pour qu’il existe un référentiel où s’annule le champ
électrique ?

d) Donner l’approximation Galiléenne (au premier ordre en v/c) des transformations
des champs.

e) Finalement on considère que dans un référentiel R le champ électrique est selon
l’axe (Oy), ~E = E ~ey et le champ magnétique ~B = ~0 nul. Donnez l’expression
des champs dans le référentiel R′ en mouvement uniforme à vitesse c β selon l’axe
(Oz). Considérer la limite ultra-relativiste, |β| ' 1, et interpréter le résultat.
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6.2. Mouvement quand les champs sont parallèles

On se place maintenant dans le référentiel où ~E et ~B sont parallèles le long de l’axe
(Oz).

a) À partir de l’expression de Fµν donner les équations du mouvement pour les
composantes de la quadrivitesse U en fonction du temps propre τ de la particule.

b) Résoudre les équations en U en supposant que l’on a les conditions initiales pour
τ = 0 telle que Ux = γ v, Uy = U z = 0 avec γ = 1/

√
1− (v/c)2.

c) À partir de la définition de la quadrivitesse donner alors l’expression de la trajec-
toire en fonction du temps t du laboratoire.

d) Que se passe-t-il quand ~E = 0 ? Quelle est l’expression de la pulsation (pulsation
cyclotron) du mouvement ?

e) Pour ~B = 0 donner l’équation de la trajectoire selon l’axe (Oz) en fonction du
temps t. Montrer que la limite non-relativiste donne l’expression classique pour la
mouvement d’une particule chargée soumise a un champ électrique uniforme

z ' qE

2m
t2 . (3)

6.2.1. Contexte historique et expérimental

L’approximation Galiléenne de la transformation du champs ~B est suffisante pour
correctement décrire l’influence d’une champs magnétique ambiant sur le spin de
l’électron.

S’il n’y a pas de différence qualitative entre le mouvement relativiste et le mouve-
ment classique, le facteur γ induit néanmoins des complications techniques dans les
applications. Dans de nombreux types d’accélérateurs, un champ magnétique est uti-
lisé pour confiner les particules au voisinage d’une trajectoire circulaire. Le facteur γ
fait que le rayon de ces trajectoires est, pour des particules ultra-relativistes, beaucoup
plus grand que ce que prédit la mécanique classique. L’encombrement de ce type de
dispositif est en partie dû à cet effet. De plus, la fréquence des champs accélérateurs,
qui doit être adaptée à la fréquence cyclotron, doit être ajustée pendant toute la phase
d’accélération pour tenir compte de la variation de ce facteur relativiste. Notons que
cette « contraction » relativiste de la fréquence cyclotron peut être mise en évidence
même pour des électrons de très basse énergie. Dans une très spectaculaire série d’ex-
périences, Hans Dehmelt et ses collaborateurs (Université de Seattle) ont étudié des
électrons confinés dans un piège constitué d’un champ magnétique et d’un champ
quadripolaire électrique (piège de Penning). Ils ont ainsi mesuré avec une précision
remarquable, sur un électron unique, le célèbre facteur gyro-magnétique anormal, qui
constitue un test sévère de l’électrodynamique quantique. Une des étapes de l’expé-
rience est d’exciter, par un champ radiofréquence convenable, le mouvement cyclotron
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de l’électron. Dehmelt a pu observer que la fréquence de résonance cyclotron se dé-
place avec l’énergie de l’électron, conformément à la loi relativiste. Les énergies mises
en jeu n’étant que d’une fraction d’électron-volt, on pourra juger de la sensibilité de
l’expérience.
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7. PC 7 : Mécanique Hamiltonienne

Relativité restreinte (PHY 431)
Pierre Vanhove

PC du 6 janvier 2015

7.1. Rappel de cours

Nous adoptons les notations introduites en PC3, à savoir ~q désigne les cordonnées
généralisées, d~q

ds := ~̇q les vitesses généralisées et s est un paramètre le long de la
trajectoire pouvant représenter le temps mais pas seulement.

Pour un système à n degrés de liberté décrit par la fonction de Lagrange L(~q, ~̇q; s),
on définit l’hamiltonien par transformation de Legendre, fonction des coordonnées
généralisées, des moments généralisés de Lagrange et du paramètre s :

H (~q, ~p, s) := ~̇q · ~p− L(~q, ~̇q, s) , (1)

avec
~p :=

∂L
∂~̇q

. (2)

En composante cette équation s’écrit

pi :=
∂L
∂q̇i

. (3)

On remarquera la position de l’indice pour la moment ~p := (pi) alors que ~q = (qi)
pour i = 1, . . . , n.
Il résulte de la définition générale de l’hamiltonien que

dH
ds

=
∂H
∂s

= −∂L
∂s

(4)

et que les équations du mouvement sont à présent données par 2n équations du premier
ordre, à savoir les équations d’Hamilton :

~̇q =
∂H
∂~p

et ~̇p = −∂H
∂~q

. (5)

Une coordonnée qα est dite cyclique lorsque

∂H
∂qα

= 0 . (6)
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Ceci traduit l’invariance de H vis-à-vis de la transformation qα → qα+εα. Il s’en suit
que pα est une constante du mouvement.

Réciproquement si ∂H/∂pα = 0 alors qα est une constante du mouvement. L’in-
dépendance de H vis-à-vis de pα est à interpréter comme une contrainte puisque qα

est une constante du mouvement. Ceci suggère une similitude entre contraintes et
symétries.

Le formalisme hamiltonien est le cadre conceptuel naturel de la mécanique classique.
C’est aussi le formalisme qui se généralise aisément en celui de la mécanique quantique.
On y définit l’espace des phases, c’est-à-dire une variété symplectique coordonnée par
les variables d’état (~q, ~p) et dotée d’une structure de crochets de Poisson :

{f, g} :=

n∑

i=1

(
∂f

∂qi
∂g

∂pi
− ∂g

∂qi
∂f

∂pi

)
, (7)

définit pour toute paire de fonctions dynamiques f (~q, ~p, t) et g (~q, ~p, t). En particulier

{qi, qj} = {pi, pj} = 0 et {qi, pj} = δij . (8)

Le crochet de Poisson satisfait la règle de Leibniz :

{f, gh} = g{f, h}+ {f, g}h , (9)

et l’identité de Jacobi :

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0 . (10)

L’évolution temporelle de toute fonction dynamique est donnée par

ḟ :=
df

dt
=
∂f

∂t
+ {f,H}. (11)

Pour toute variable dynamique f (~q, ~p) ne dépendant pas explicitement du temps, on
conclut donc que

ḟ = 0⇐⇒ {f,H} = 0. (12)

Ceci est un cas particulier du théorème de Nœther : à toute invariance correspond
une loi de conservation.

Grâce à l’identité de Jacobi, on démontre le corollaire suivant : si f et g ne dépendent
pas explicitement du temps et sont conservées, il en va de même pour {f, g}.
On définit enfin les transformations canoniques comme des transformations des

variables d’état (coordonnées et moments) qui conservent la structure de crochet de
Poisson et donc les équations d’Hamilton.

Les transformations canoniques sont les transformations des variables d’état
qui laissent invariantes les équations du mouvement. On montre que (qi, pi) →
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(Qj(qi, pi), Pj(q
i, pi)) est une transformation est canonique si et seulement si

{Qi, Qj} = {Pi, Pj} = 0 et {Qi, Pj} = δij . (13)

Il en résulte que les crochets de Poisson peuvent s’écrire indifféremment avec tout
système de variables obtenu par transformation canonique.

Figure 1. – Espace des phase du pendule simple

7.1.1. Exemples

1. Lorsque L(~q, ~̇q; s) = T−V où T (~q, ~̇q; s) est une fonction quadratique des vitesses
et V (~q; s) une fonction indépendante des vitesses alors H = T +V . C’est ce que
nous avons vu en PC3 lorsque nous avons étudié la fonctionnelle de Beltrami.

2. La figure 1 représente l’espace des phases (θ(t), pθ = θ̇(t)) des orbites d’un pen-
dule simple de longueur unité oscillant par rapport à la verticale. La conservation
de l’énergie donne

θ̇2 + 2(1− cos θ) = H (14)

Si l’énergie du système est faible le mouvement est oscillatoire autour de la
verticale (orbites périodes en noir), si l’énergie est importante le pendule tourne
autour de l’origine (orbites en rouge). L’orbite en bleu est la séparatrice entre
les deux régimes et les points, au centre et aux croisement des lignes bleues, sont
des points d’équilibre θ = nπ pour n ∈ Z. Seuls θ ≡ 0 mod 2π sont stable. La
solution de l’équation différentielle s’exprime au moyen d’une fonction elliptique
de Jacobi.

Si l’on se place au voisinage du point d’équilibre instable θ ≡ π mod 2π, il est
difficile de prédire l’évolution du système après une petite perturbation. Si elle décroit
l’énergie du système nous devrions avoir une oscillation périodique, si elle augmente
l’énergie l’évolution sera une rotation autour de l’origine.
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L’analyse de la réponse des systèmes aux petites perturbations commença avec les
travaux de Poincaré puis Liapunov et Birkhoff. Il apparut que même pour un système
déterministe avec un faible nombre de degrés de liberté l’évolution du système est dif-
ficile à prédire. On parle de comportement chaotique. Sous l’impulsion de Kolmogorov
l’école russe accomplit des travaux formidables dont ceux de Bogoliubov, Krylov, et
Arnol’d. En 1971 l’article de D. Ruelle et F. Takens suggéra pour la première fois que
le chaos peut se développer après une succession de trois bifurcations contrairement
à la théorie proposée par Lev D. Landau qui supposait une infinité de bifurcations.
On pourra consulter le livre de David Ruelle Hasard et Chaos Odile Jacob (1991)

pour se familiariser avec le caractère particulier du chaos.
Dans le livre C. Teitelboim, M. Henneaux,Quantization of gauge systems, Princeton

University Press, 1992, on trouve un exposé systématique des systèmes hamiltoniens
contraints avec des invariances globales et locales diverses.

7.2. L’oscillateur harmonique

On considère un oscillateur harmonique à une dimension de potentiel

U(q) =
1

2
mω2q2 (15)

a) Déduire les équation du mouvement en utilisant le formalisme Lagrangien

b) Déduire les équation du mouvement en utilisant le formalisme Hamiltonien

c) Montrer à l’aide des équations de Hamilton que le Lagrangien suivant décrit le
mouvement d’un oscillateur amorti :

L =
1

2
eα t

(
q̇2 − ω2q2

)
. (16)

7.3. Mouvement dans un repère tournant

En PC3 nous avons vu que le lagrangien, pour une objet ponctuel de masse m de
vitesse ~v dans un référentiel en rotation de vitesse angulaire ~Ω, est donné par

L =
m

2
v2 +m~v ·

(
~Ω× ~r

)
+
m

2

(
~Ω× ~r

)2
. (17)

a) Montrer que les moments généralisés et l’hamiltonien correspondant sont donnés
par

~p = m
(
~v + ~Ω× ~r

)
(18)

H =
p2

2m
− ~Ω · ~̀, (19)

52



7.4. Le cerceau à vitesse angulaire constante

où
~̀= ~r × ~p (20)

est le vecteur moment cinétique.

7.4. Le cerceau à vitesse angulaire constante

Une perle glisse sans frottement le long d’un cerceau de rayon R animé d’un mou-
vement de rotation autour de son axe à vitesse angulaire ω constante. La position de
la perle sur le cerceau est déterminée par un seul degré de liberté, l’angle θ avec la
verticale. La position du cerceau est elle décrite par l’angle φ

Les équations de Hamilton donnent

q̇ = pe−αt et ṗ = −ω2qeαt.

On en déduit l’équation du mouvement :

q̈ + ω2q + αq̇ = 0.

3.5.2 Le cerceau à vitesse angulaire constante

Une bille glisse sans frottement le long d’un cerceau de rayon R animé d’un
mouvement de rotation autour de son axe à vitesse angulaire ω constante. La
position de la bille sur le cerceau est déterminée par un seul degré de liberté,
l’angle θ avec la verticale. La position du cerceau est elle décrite par l’angle φ
(voir la figure 8).

φ

θ

Fig. 8 – La bille sur le cerceau en rotation.

1) Écrire le Lagrangien de ce système et en déduire l’équation du mouvement.
2) Écrire le Hamiltonien du système et en déduire à nouveau l’équation du
mouvement.
3) Montrer que la bille est soumise à un potentiel effectif V (θ) dont on étudiera
le comportement en fonction de θ. On posera ω0 =

√
g/R.

4) Quel est le comportement de la bille pour des vitesses de rotation lente
(ω < ω0) ?
5) Même question dans le cas de la rotation rapide (ω > ω0).

Réponse :

1) En coordonnées sphériques, la position de la bille est donc déterminée par
R, θ(t) et φ(t). Sa vitesse est donc Rθ̇%eθ + R sin θφ̇%eφ, avec φ̇ = ω. Son énergie

31

Figure 2. – Perle sur le cerceau en rotation

a) Écrire le lagrangien de ce système et en déduire l’équation du mouvement.

b) Écrire l’hamiltonien du système et en déduire à nouveau l’équation du mouvement.

c) Montrer que la perle est soumise à un potentiel effectif V (θ) dont on étudiera le
comportement en fonction de θ. On posera ω2

0 = g/R.

d) Quel est le comportement de la perle pour des vitesses de rotation lente (ω < ω0) ?

e) Même question dans le cas de la rotation rapide (ω > ω0).

53



7. PC 7 : Mécanique Hamiltonienne

54



8. PC8 : Relativité et gravitation

Relativité restreinte (PHY 431)
Pierre Vanhove

PC du 13 janvier 2015

8.1. Rappels de cours

Dans cette PC nous abordons des notions de relativité générale. La relativité géné-
rale traite du cas des espaces-temps courbes et un certains nombre des formules vues
dans le cas de l’espace-temps plat de Minkowski doivent être adaptées pour refléter
ce fait.
Le temps propre d’une particule ds2 = (cdτ)2 = (dt)2 − (d~x)2 = ηµνdx

µdxν va
devenir l’élément de longueur géodésique

ds2 = gµν(xρ) dxµdxν . (1)

Sous un changement de coordonnées locales xµ → yµ(x) l’élément de longueur
géodésique doit être invariant donc

ds2 = gµν(x)
∂xµ

∂yρ
∂xν

∂yσ
dyρdyσ (2)

implique que la loi de transformation de la métrique est donnée par

gρσ(y) = gµν(x)
∂xµ

∂yρ
∂xν

∂yσ
. (3)

Dès 1911 Einstein a réalisé que le principe d’équivalence a deux conséquences phy-
siques importantes sur la propagation des rayons lumineux dans un champ de gravi-
tation. La première est que le décalage de la fréquence d’émission et de réception en
des positions de l’espace-temps où le champs gravitationnel diffère.
C’est l’effet Doppler gravitationnel donné par

νemission = νreception

(
1 +

Φ

c2

)
(4)

où Φ est le potentiel gravitationnel. Dans un univers en expansion cet effet est res-
ponsable du rougissement de la lumière (le redshift). La facteur de rougissement est
utilisé pour indiquer distance des objets astrophysiques.
La seconde conséquence est que la lumière sera déviée par un objet massif gravi-

tant. Il a fait un premier calcul en 1911, publié dans l’article « Über den Einfluss
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8. PC8 : Relativité et gravitation

Figure 1. – Lettre d’Einstein a George Ellery Hale à l’observatoire du Mont Wilson
en Californie, où il demande de mesurer la déviation des rayons lumi-
neux. La déviation des rayons lumineux près du Soleil fut confirmée par
Eddington qui releva la position des étoiles durant l’éclipse de 1919.

der Schwercraft auf die Ausbreitung des Lichtes » Annalen der Physik [35], 1911. 1

Ce calcul est celui présenté dans la question 9.3b. Il donne une réponse incorrecte
d’un facteur 2 trop faible car il n’inclut pas les effets relativistes. Il a corrigé cette
erreur dans son article de 1916 en travaillant avec la métrique courbe de Schwarschild
décrivant la géométrie de l’espace-temps au voisinage d’un objet massif stationnaire
à symétrie sphérique. La courbure des rayons lumineux par des objets massifs a pour
conséquence visible les phénomènes de lentilles gravitationnelles.
Une autre manifestation expérimentale est la génération d’onde gravitationnelles.

On a des mesures indirectes, grâce à l’évolution des systèmes de pulsar binaire. On
n’a pas encore de détection directe des ondes gravitationnelles.

8.2. Géodésiques en relativité générale

On considère le Lagrangien d’une particule en mouvement entre deux événements
A et B

S =

∫ sB

sA

(dτ)2 (5)

dans un espace-temps courbe de métrique gµν(xσ). Le temps propre s’exprime alors

(cdτ)2 = gµν(xρ)dxµdxν (6)

1. Une traduction anglaise est accessible ici http://www.relativitybook.com/resources/Einstein_gravity.html
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ainsi nous obtenons un Lagrangien généralisant celui vu en PC4 (exercice 4.2)

S =

∫ sB

sA

gµν(xσ)ẋµẋν ds, (7)

où ẋµ est par définition dxµ/ds et où s est un paramètre le long de la courbe joignant
A à B.

a) Écrire les équations d’Euler-Lagrange dérivant de ce Lagrangien. Ces équations
sont celles des géodésiques suivies par la particule.

b) Montrer que ces équations peuvent se mettre sous la forme

ẍµ + Γµλρẋ
λẋρ = 0 (8)

où Γµλρ est le symbole de Christoffel définit par

Γµλρ :=
1

2
gµσ (∂λgσρ + ∂ρgσλ − ∂σgλρ) , (9)

gµν étant l’inverse de gµν i.e. vérifiant gµνgνρ = δµρ .

On considère le mouvement lent d’une particule ponctuelle dans un champ gravita-
tionnel faible et stationnaire. Ainsi la métrique est proche de la métrique de Minkowski
et s’écrit

gµν = ηµν + hµν avec hµν � 1 et hµν = hνµ. (10)

On admettra que l’on peut paramétriser le mouvement de cette particule par son
temps propre en prenant s = τ .

c) Montrer que les équations géodésiques se réduisent aux équations du mouvement
d’une particule dans un champ gravitationnel que l’on reliera aux composantes
pertinentes de hµν .

On considère la métrique de Schwarzschild donnée par

ds2 =

(
1− 2GNM

rc2

)
c2dt2 −

(
1− 2GNM

rc2

)−1

dr2 − r2
(
dθ2 + sin2 θdϕ2

)
(11)

où GN est la constant de Newton. On suppose que l’on se place loin de r = 0 et que
l’on peut développer cette métrique au voisinage de la métrique de Minkowski écrite
en coordonnée sphérique donnée par

ds2 = c2dt2 − dr2 − r2
(
dθ2 + sin2 θdϕ2

)
(12)

d) Vérifier que le calcul précédent permet de retrouver le potentiel gravitationnel
usuel autour d’un corps à symétrie sphérique.
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La métrique de Schwarzschild fait intervenir un rayon caractéristique rS = 2GNM/c2.
Pour le soleil ce rayon est vaut rs ' 2953m soit environ 3 km.

8.3. Déviation des rayons lumineux

2.2. PRINCIPE D’ÉQUIVALENCE 11

(b)

A B A
B

(a)

Fig. 2.1 – Trajectoire d’un photon dans un ascenseur. (a) Référentiel en chute libre (b) Référentiel de la
Terre.

⇠
p

b2 + v2t2

b '

�✓

O

Fig. 2.2 – Déviation d’un rayon lumineux par une masse M placée en O.

�py =

Z +1

�1
Fy dt Fy = � GmM

b2 + v2t2
cos' = � GmMb

(b2 + v2t2)3/2

où b est le paramètre d’impact. On obtient donc

�py = �GmMb

Z +1

�1

dt

(b2 + v2t2)3/2
= �2GmM

bv
(2.7)

soit pour l’angle de déviation2

�✓ =
�py

mv
=

2GM

bv2
(2.8)

Extrapolant hardiment au cas d’un photon pour lequel v = c, on en déduit �✓ = 2GM/(bc2), ce qui
correspond pour une incidence rasante sur le Soleil (b = RS = rayon du Soleil) à une déviation de 0.87”
(seconde d’arc), résultat obtenu initialement par Einstein en 1907. Le résultat de la relativité générale
(1915) est le double : 1.75”. En fait, dans ce calcul, nous sommes allés au-delà du principe d’équivalence,
valable uniquement pour des champs de gravitation constants, et il n’est pas surprenant que notre résultat
soit quantitativement incorrect, même si le phénomène est prédit correctement de façon qualitative.

2Il est évidemment facile de donner une formule exacte étant donné que les orbites sont des hyperboles

cot
�✓

2
=

bv2

GM

résultat qui cöıncide avec (2.8) pour �✓ ⌧ 1.

Figure 2. – Déviation de la lumière au voisinage du soleil.

On considère une petite masse m 6= 0 arrivant de l’infini et rasant le soleil de masse
M�. La trajectoire de la particule s’incurve d’un angle ∆θ faible (voir la figure). On
supposera que y ∼ b est constant.

a) Montrer que l’angle de déviation ∆θ est donné par

∆θ =

∫ ∞

−∞
∂xvy dt . (13)

où vy est la projection de la vitesse sur l’axe verticale Oy de la figure.

b) En utilisant le bilan des forces en mécanique classique calculer la variation dvy/dt
de la composante verticale du moment cinétique. En utilisant que dx = vdt est
constant, puisque l’on suppose la déviation faible, en déduire l’expression pour ∆θ.

c) En déduire le résultat pour la déviation des rayons lumineux par le soleil dans le
cadre de la mécanique Newtonienne. Pour cela on utilisera les valeurs suivantes
pour la masse du soleil M� = 1.9891 1030 kg et son rayon R� = 695500 km et on
rappelle la valeur de la vitesse de la lumière c = 299792458m/s et la constante de
gravitation GN = 6.67300× 10−11m3/(kg s2).

Nous allons maintenant recalculer cette déviation dans le cadre de la relativité
générale.
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c) Montrez que l’équation du mouvement géodésique dans (8) implique

1

c

dvy

dx
= −Γy00

( c
v

+
v

c

)
− 2Γyx0 . (14)

Pour cela on rappelle que uµ = dxµ/dτ , donc u0 = γ(v) = (1 − v2/c2)−
1
2 ,

ux = γ vx/c et uy = γ vy/c. On utilisera les approximations suivantes uy ' 0,
ut 'constante, ux 'constante. Et que Γy00 ' Γyxx pour la métrique de Schwarz-
schild donnée dans l’équation (11).

d) En supposant que pour le soleil Γy00 = Γyxx ' +GNMb/(r3c2) et Γyx0 ' 0 calculer
l’angle de déviation de la lumière par le soleil.

e) Interprétez la différence entre les deux résultats.

8.4. Compléments : les équations d’Einstein

À partir des symboles de Christoffel, on peut définir le tenseur de Riemann Rµνρσ
par la formule

Rµνρσ = ∂ρΓ
µ
νσ − ∂σΓµνρ + ΓλνσΓµλρ − ΓλνρΓ

µ
λσ. (15)

Puis on définit le tenseur de Ricci Rνσ := Rµνµσ et le scalaire de Ricci R := Rµνg
µν =

Rµνgµν . La relativité générale d’Einstein découle du Lagrangien d’Einstein-Hilbert

S =
c4

16πGN

∫

M4

√
−det gR d4x+

∫

M4

√
−det gLm d4x , (16)

où det g = det(gµν), GN est la constant de gravitation de Newton. La variation du
lagragien de matière Lm donne le tenseur-énergie impulsion décrivant le couplage de
la matière ou densité d’énergie à la gravitation

Tµν := − 2√− det g

∂(
√−det gLm)

∂gµν
. (17)

Un calcul un peu long de la variation de cette action par rapport à la métrique gµν
donne les équations d’Einstein

Rµν −
1

2
gµνR =

8πGN
c2

Tµν . (18)

Nous recommandons les livres S. Weinberg “Gravitation and Cosmology” John Wiley,
New-York (1972) et Landau and Lifchitz “Théorie classique des champs” MIR.
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9. DM1 : Devoir à la maison

Relativité restreinte (PHY 431)
Pierre Vanhove

Devoir à la maison
à rendre en PC4 (2/12/2014)

9.1. Équation d’onde

On considère l’espace à quatre dimensions de coordonnées (ct, x, y, z) munit de la
métrique ηµν := (+1,−1,−1,−1). Soit (ct′, x′, y′, z′) un autre système de coordonnées
reliée au premier système par la transformation suivante




ct
x
y
z


 =




a b 0 0
b a 0 0
0 0 1 0
0 0 0 1







ct′

x′

y′

z′


 (1)

On considère l’opérateur d’Alembertien définit par

2 :=
1

c2

∂2

∂t2
− ∂2

∂x2
− ∂2

∂y2
− ∂2

∂z2
. (2)

a) Déterminer la loi de transformation du d’Alembertien sous la transformation (1).

b) Considérer le cas de deux observateurs avec une vitesse relative v selon l’axe (Ox)
faible devant la vitesse de la lumière. Montrer qu’au premier ordre en v/c la trans-
formation de référentiel entre les observateurs correspond à (a, b) = (1, v/c). Cal-
culer la transformation du d’Alembertien sous cette transformation. Que concluez-
vous ? On examinera le cas particulier où c→∞.

c) On considère maintenant que nos deux observateurs sont relativistes, toujours en
mouvement relatif à vitesse v le long de l’axe (Ox). Donner la loi de transformation
du d’Alembertien. Que concluez-vous ?

d) On considère l’équation de Schrödinger

− ~2

2m
∆Ψ(t, x, y, z) + U(x, y, z) Ψ(t, x, y, z) = i~

∂Ψ(t, x, y, z)

∂t
(3)

avec la laplacien ∆ = (∂/∂x)2 + (∂/∂y)2 + (∂/∂z)2. Étudier l’invariance cette
équation sous une transformation galiléenne. Montrer qu’il existe une fonction
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f(t′, x′) telle que Ψ(t, x) = f(t′, x′) Ψ̃(t′, x′) avec Ψ̃(t′, x′) une fonction d’onde
satisfaisant l’équation de Schrödinger en les variables (t′, x′).

e) Que ce passe-t-il pour l’équation d’onde 2φ(t, x, y, z) = 0 dans le cas galiléen et
relativiste. Peut-on trouver une fonction f(t′, x′) telle que φ(t, x) = f(t′, x′) φ̃(t′, x′)
et que l’équation d’onde soit invariante sous les transformations galiléennes. Qu’en
déduire sur la nature de l’équation d’onde ?

9.2. Paradoxe d’Ehrenfest

En 1909 Paul Ehrenfest a énoncé un paradoxe semblant montrer une incohérence
logique à la relativité restreinte.
On considère un disque de rayon ρ en rotation avec une vitesse angulaire constante

ω. On dénote par R le repère inertiel du laboratoire et R′ le repère en rotation attaché
au disque.

a) Quelle est la valeur du rayon du disque dans les repères R et R′ ?

b) Quelle est la circonférence L dans le repère du laboratoire R et L′ dans le repère
du disque en rotation ?

c) Comparer les rapports L/R et L′/R′ ? Qu’en concluez-vous ?

9.3. Effet Sagnac

L’effet Sagnac est un autre effet paradoxal de la relativité restreinte découvert par
Georges Sagnac en 1913. Cet effet permet de détecter en optique un mouvement de
rotation par rapport à un référentiel inertiel. Des gyroscopes à laser exploitant l’effet
Sagnac sont utilisés dans certains avions de ligne Airbus ou Boeing pour mesurer avec
précision la rotation d’un dispositif relativement à un repère inertiel.
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9.3. Effet Sagnac

On considère à nouveau un disque de rayon ρ en rotation avec une vitesse angulaire
constante ω. On dénote par R le repère inertiel du laboratoire et R′ le repère en
rotation attaché au disque.
Sur le bord du disque est placé un émetteur/récepteur E. Ce dispositif émet un

signal S1 qui se propage avec une vitesse ω1 dans le sens de rotation du disque, et
un signal S2 qui se propage avec une vitesse ω2 dans le sens opposé à la rotation du
disque. Les deux signaux évoluent le long du bord extérieur du disque.

a) Déterminez les positions angulaires θ1 et θ2 de réception des signaux S1 et S2 par
le détecteur.

b) Calculer les temps propre τ1 et τ2 de propagation de chacun des signaux entre
l’émission et la réception. Calculer la différence des δτ = τ1 − τ2.

c) Si l’émetteur/récepteur émet de la lumière de manière isotrope ω′ = ω1 = −ω2,
donner l’expression de différence de temps δτ .

d) Considérer la limite non relativiste. Qu’en concluez vous ?
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DM2 : Second devoir à la maison

Relativité restreinte (PHY 431)
Pierre Vanhove

Devoir à la maison
à rendre en PC7 (6/1/2015)

1.1. Équation de Maxwell et sources

Le rang de covariance d’un tenseur est augmenté d’une unité par l’action de l’opé-
rateur ∂ de « composantes » {∂µ, µ = 0, 1, 2, 3} ≡ (∂tc ,

~∇). Le tenseur métrique (ηµν
ou son inverse ηµν) et le tenseur antisymétrique de Levi–Civita (εµνρσ ou εµνρσ avec
ε0123 = 1 = −ε0123) peuvent aussi être utilisés pour engendrer de nouveaux tenseurs
ou scalaires (invariants) à partir de tenseurs préalablement définis.
Si l’on considère le tenseur de Faraday F décrit le champ électromagnétique. Ses

composantes Fµν forment la matrice suivante :

Fµν :=




0 Ex/c Ey/c Ez/c
−Ex/c 0 Bz −By
−Ey/c −Bz 0 Bx
−Ez/c By −Bx 0


 . (1)

alors
Fµ = εµνρσ ∂νFρσ. (2)

a) Montrer l’équivalence

Fµ = 0⇐⇒ ∂µFνρ + ∂νFρµ + ∂ρFµν = 0 (3)

On a vu en PC4 que cette équation implique les équations de Maxwell suivantes

∇ · ~B = 0 absence de monopôles magnétiques (4)

~∇× ~E +
∂ ~B

∂t
= 0 loi de Faraday (5)

b) Vérifiez les expressions des invariants relativistes du champs électromagnétique

ηµρηνσFµνFρσ = −2

(
~E2

c2
− ~B2

)
, (6)

εµνρσFµνFρσ = −8

c
~E · ~B (7)

1



10. DM2 : Second devoir à la maison

c) Montrez que l’équation

∂µF
µν = µ0 j

ν , (8)

implique les équations de Maxwell avec sources

~∇ · ~E =
%

ε0
loi de Gauss (9)

∇× ~B − 1

c2

∂ ~E

∂t
= µ0 ~ loi d’Ampère (10)

où % et ~j sont les densités de charge et de courant (rappel : µ0ε0c
2 = 1).

d) Montrer que J = {jν , ν = 0, 1, 2, 3} := (c%,~ = %~v ) sont les composantes d’un
quadrivecteur J, dit de densité de courant, si la charge électrique est invariante
sous les transformation de Lorentz.

e) Montrer que les équations inhomogènes de Maxwell imposent l’équation de conti-
nuité

∂%

∂t
+ ~∇ · ~ = 0. (11)

f) Écrire cette équation en utilisant le quadri-vecteur J. Obtenir cette équation di-
rectement à partir de (8).

Nous avons vu en PC4 que les équations homogènes de Maxwell (4)-(5) sont satis-
faites si Fµν résulte d’un potentiel A = (A0/c, ~A) selon

Fµν = ∂µAν − ∂νAµ . (12)

Nous avons vu que A est défini à la dérivée d’une fonction arbitraire près

A→ A′ +∇χ . (13)

Nous avons vu aussi que pour fixer cette liberté de jauge, on impose une contrainte.
Une contrainte invariante de Lorentz est la jauge de Lorenz

∂µA
µ = 0 . (14)

g) Montrer que dans cette jauge les équations de Maxwell inhomogènes deviennent

2A = µ0 J, (15)

où 2 := ∂µ∂
µ = 1

c2
∂2

∂t2
−4 est l’opérateur d’Alembertien.
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1.2. Le pendule double

Chapitre 4

Modélisation d’un pendule double

Fig. 4.1 – Le pendule double

L’objectif de ce projet est de modéliser la dynamique d’un pendule double placé dans le
champ de gravitation terrestre. Ce pendule est constitué de deux masses reliées par des cables
rigides de masses négligeables.

En coordonnées polaires on exprime les positions des deux masses

x1 = l1 sin(θ1)

y1 = −l1 cos(θ1)

et
x2 = l1 sin(θ1) + l2 sin(θ2)

6

1.2. Le pendule double

On veut analyser la dynamique d’un pendule double placé dans le champ de gravi-
tation terrestre. Ce pendule est constitué de deux masses reliées par des cables rigides
de masses négligeables (voir fig 1.2).

a) Écrire le lagrangian du système. En déduire les équation d’Euler-Lagrange.

b) Sous l’hypothèse d’un angle initial θ0 suffisamment petit, écrire les équation du
mouvement dans l’approximation des petits déplacements.

c) Résoudre les équations du mouvement. On suppose les condition initiales suivantes
θ1(0) = θ0, θ2(0) = 0 et θ̇1(0) = θ̇2(0) = 0.

1.3. L’atome d’hydrogénoïde

On considère un atome Hydrogénoïde, obtenu en arrachant à un atome tous ses
électrons sauf un. Ces atomes se comportent comme un atome d’Hydrogène avec un
noyau de charge électrique réduite Z > 1.
L’électron est donc soumis au potentiel

V (r) = − Ze2

4πε0r
(16)

3



10. DM2 : Second devoir à la maison

Figure 1. – manuscrit de l’article de Niels Bohr de juillet 1913 (avec la permission
de l’« Archive Niels Bohr », Copenhague)

a) Donner l’expression du Lagrangien du système en coordonnées sphériques

b) Obtenir les équations d’Euler-Lagrange.

c) Montrer l’existence de quantités conservées. Interpréter.

1.4. Pendule sphérique

On considère une masse m attachée à l’extrémité d’une tige rigide de masse négli-
geable, l’autre extrémité étant fixe par rapport au laboratoire. La longueur de la tige
est R. On note ϕ la colatitude (le pole de la sphère étant choisi à la verticale de son
centre) et θ la longitude (cf. figure 2).

Figure 2. – Schéma d’un pendule sphérique et photographie d’un manège fonction-
nant selon le principe du pendule sphérique.

a) Écrire le Lagrangien pour le pendule sphérique.
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1.4. Pendule sphérique

b) En déduire que ϕ, définie sur la figure 2, est une variable cyclique. Quelle est la
quantité conservée associée ? Trouvez l’autre quantité conservée.

c) Montrer que l’angle θ satisfait une équation de la forme

dθ

dt
= f(θ,E1, E2) (17)

où f est une fonction de θ que l’on déterminera et de deux constantes du mouve-
ment E1 et E2 que l’on interprétera.
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2. Second devoir à la maison (2012)

Relativité restreinte (PHY 431)
Pierre Vanhove

Devoir à la maison
à rendre en PC 7 (19/12/2012)

Devoir donnée en 2012

2.1. Équation de Maxwell et sources

Le rang de covariance d’un tenseur est augmenté d’une unité par l’action de l’opé-
rateur ∂ de « composantes » {∂µ, µ = 0, 1, 2, 3} ≡ (∂tc ,

~∇). Le tenseur métrique (ηµν
ou son inverse ηµν) et le tenseur antisymétrique de Levi–Civita (εµνρσ ou εµνρσ avec
ε0123 = 1 = −ε0123) peuvent aussi être utilisés pour engendrer de nouveaux tenseurs
ou scalaires (invariants) à partir de tenseurs préalablement définis.
Si l’on considère le tenseur de Faraday F décrit le champ électromagnétique. Ses

composantes Fµν forment la matrice suivante :

Fµν :=




0 Ex/c Ey/c Ez/c
−Ex/c 0 Bz −By
−Ey/c −Bz 0 Bx
−Ez/c By −Bx 0


 . (1)

alors
Fµ = εµνρσ ∂νFρσ. (2)

a) Montrer l’équivalence

Fµ = 0⇐⇒ ∂µFνρ + ∂νFρµ + ∂ρFµν = 0 (3)

On a vu en PC5 que cette équation implique les équations de Maxwell suivantes

∇ · ~B = 0 absence de monopôles magnétiques (4)

~∇× ~E +
∂ ~B

∂t
= 0 loi de Faraday (5)
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2. Second devoir à la maison (2012)

b) Vérifiez les expressions des invariants relativistes du champs électromagnétique

ηµρηνσFµνFρσ = −2

(
~E2

c2
− ~B2

)
, (6)

εµνρσFµνFρσ = −8

c
~E · ~B (7)

c) Montrez que l’équation

∂µF
µν = µ0 j

ν , (8)

implique les équations de Maxwell avec sources

~∇ · ~E =
%

ε0
loi de Gauss (9)

∇× ~B − 1

c2

∂ ~E

∂t
= µ0 ~ loi d’Ampère (10)

où % et ~j sont les densités de charge et de courant (rappel : µ0ε0c
2 = 1).

d) Montrer que J = {jν , ν = 0, 1, 2, 3} := (c%,~ = %~v ) sont les composantes d’un
quadrivecteur J, dit de densité de courant, si la charge électrique est invariante
sous les transformation de Lorentz.

e) Montrer que les équations inhomogènes de Maxwell imposent l’équation de conti-
nuité

∂%

∂t
+ ~∇ · ~ = 0. (11)

f) Écrire cette équation en utilisant le quadri-vecteur J. Obtenir cette équation di-
rectement à partir de (24).

Nous avons vu en PC5 que les équations homogènes de Maxwell dans (3), ou de
manière équivalente (10)-(11) sont satisfaites si Fµν résulte d’une forme de potentiel
A = (A0/c, ~A) selon

Fµν = ∂µAν − ∂νAµ . (12)

Nous avons vu que A est défini à la dérivée d’une fonction arbitraire près

A→ A′ +∇χ (13)

Nous avons vu aussi que pour fixer cette liberté de jauge, on impose une contrainte.
Un contrainte invariante de Lorentz est la jauge de Lorenz

∂µA
µ = 0 . (14)
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2.2. Effet de seuil

g) Montrer que dans cette jauge les équations de Maxwell inhomogènes deviennent

2A = µ0 J, (15)

où 2 := ∂µ∂
µ = 1

c2
∂2

∂t2
−4 est l’opérateur d’Alembertien.

2.2. Effet de seuil

On considère la réaction de désintégration d’un pion π− sur un proton p+ considéré
au repos dans le repère du laboratoire

π− + p+ → K0 + Λ0 (16)

Le méson pion π−, composé par la pair de quark ūd, a une massemπ−c
2 = 140 MeV.

Le baryon proton, composé des trois quarks uud, a une masse mp+c2 = 938 MeV. Le
méson kaon K0, est une superposition des états liées des pairs de quarks ds̄ et d̄s. Il a
une masse de mK0c2 = 498 MeV. Finalement, le baryon Λ0, composé des trois quarks
uds, a une masse de mΛ0 = 1116 MeV.

a) Calculez l’énergie de seuil du pion pour la réaction puisse avoir lieu

Dans une expérience où le pion a une énergie cinétique incidente de 2.5 GeV, le baryon
Λ0 est observé avec une énergie cinétique de 0.6 GeV, et dans une direction à 45◦ par
rapport au mouvement du pion. On rappelle que 1GeV= 103 MeV.

b) Calculez le facteur γCM dans le repère du centre de masse.

c) Calculez l’énergie cinétique du kaon K0 dans le repère du laboratoire et du centre
de masse.

2.2.1. Contexte historique et expérimental

Depuis leur découverte en 1947 les Kaons ont été une source d’information im-
portante sur la nature des interactions fondamentales. Ils ont joué un rôle important
dans la compréhension du modèle des quarks. Les Kaons portent un nombre quantique
d’étrangeté S, induit par Murray Gell-Mann (Nobel 1969) et Kazuhiko Nishijima. Ils
introduisirent ce nombre quantique pour expliquer la facile production des Kaons
et leur désintégration plus lente que ce qui est attendu compte tenu de leur masse.
Ce nouveau nombre quantique d’étrangeté est postulé être conservé lors des collisions
(comme pour celle donnée ci dessus), mais pas lors de la désintégration de la particule.
Un autre particularité du Kaon neutre K0 est d’avoir une antiparticule violant la

symétrie de parité. La Kaon court K0
S = (ds̄ + sd̄)/

√
2 a un temps de vie de deux

ordre de grandeur inférieur à celui du Kaon long K0
L = (ds̄+ sd̄)/

√
2. Ces particules

sont leur propre antiparticule.
C’est en utilisant des Kaons qu’a été découverte de la violation de la symétrie

CP, responsable pour l’asymétrie entre matière et antimatière dans l’univers. Cette
expérience a reçu le prix Nobel en 1980.
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2.3. Pendule sphérique

On considère une masse m attachée à l’extrémité d’une tige rigide de masse négli-
geable, l’autre extrémité étant fixe par rapport au laboratoire. La longueur de la tige
est R. On note ϕ la colatitude (le pole de la sphère étant choisi à la verticale de son
centre) et θ la longitude (cf. figure 1).

Figure 1. – Pendule sphérique

a) Écrire le Lagrangien pour le pendule sphérique.

b) En déduire que ϕ est une variable cyclique. Quelle est la quantité conservée asso-
ciée ? Trouvez l’autre quantité conservée.

c) Montrer que l’on a

dθ

dt
= f(θ,E1, E2) (17)

où f est une fonction de θ que l’on déterminera et de deux constantes du mouve-
ment E1 et E2 que l’on interprétera.
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Relativité restreinte (PHY 431)
Pierre Vanhove

Devoir à la maison
à rendre en PC7 (20/12/2013)

donné en 2013

3.1. Équation de Maxwell et sources

Le rang de covariance d’un tenseur est augmenté d’une unité par l’action de l’opé-
rateur ∂ de « composantes » {∂µ, µ = 0, 1, 2, 3} ≡ (∂tc ,

~∇). Le tenseur métrique (ηµν
ou son inverse ηµν) et le tenseur antisymétrique de Levi–Civita (εµνρσ ou εµνρσ avec
ε0123 = 1 = −ε0123) peuvent aussi être utilisés pour engendrer de nouveaux tenseurs
ou scalaires (invariants) à partir de tenseurs préalablement définis.
Si l’on considère le tenseur de Faraday F décrit le champ électromagnétique. Ses

composantes Fµν forment la matrice suivante :

Fµν :=




0 Ex/c Ey/c Ez/c
−Ex/c 0 Bz −By
−Ey/c −Bz 0 Bx
−Ez/c By −Bx 0


 . (1)

alors
Fµ = εµνρσ ∂νFρσ. (2)

a) Montrer l’équivalence

Fµ = 0⇐⇒ ∂µFνρ + ∂νFρµ + ∂ρFµν = 0 (3)

On a vu en PC5 que cette équation implique les équations de Maxwell suivantes

∇ · ~B = 0 absence de monopôles magnétiques (4)

~∇× ~E +
∂ ~B

∂t
= 0 loi de Faraday (5)
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b) Vérifiez les expressions des invariants relativistes du champs électromagnétique

ηµρηνσFµνFρσ = −2

(
~E2

c2
− ~B2

)
, (6)

εµνρσFµνFρσ = −8

c
~E · ~B (7)

c) Montrez que l’équation

∂µF
µν = µ0 j

ν , (8)

implique les équations de Maxwell avec sources

~∇ · ~E =
%

ε0
loi de Gauss (9)

∇× ~B − 1

c2

∂ ~E

∂t
= µ0 ~ loi d’Ampère (10)

où % et ~j sont les densités de charge et de courant (rappel : µ0ε0c
2 = 1).

d) Montrer que J = {jν , ν = 0, 1, 2, 3} := (c%,~ = %~v ) sont les composantes d’un
quadrivecteur J, dit de densité de courant, si la charge électrique est invariante
sous les transformation de Lorentz.

e) Montrer que les équations inhomogènes de Maxwell imposent l’équation de conti-
nuité

∂%

∂t
+ ~∇ · ~ = 0. (11)

f) Écrire cette équation en utilisant le quadri-vecteur J. Obtenir cette équation di-
rectement à partir de (24).

Nous avons vu en PC5 que les équations homogènes de Maxwell (4)-(5) sont satis-
faites si Fµν résulte d’un potentiel A = (A0/c, ~A) selon

Fµν = ∂µAν − ∂νAµ . (12)

Nous avons vu que A est défini à la dérivée d’une fonction arbitraire près

A→ A′ +∇χ . (13)

Nous avons vu aussi que pour fixer cette liberté de jauge, on impose une contrainte.
Une contrainte invariante de Lorentz est la jauge de Lorenz

∂µA
µ = 0 . (14)
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3.2. Géodésique sur la sphère

g) Montrer que dans cette jauge les équations de Maxwell inhomogènes deviennent

2A = µ0 J, (15)

où 2 := ∂µ∂
µ = 1

c2
∂2

∂t2
−4 est l’opérateur d’Alembertien.

3.2. Géodésique sur la sphère

On veut déterminer le chemin le plus court entre deux points sur une sphère de
rayon R.

a) Si s est un paramètre le long de la courbe exprimer la longueur du chemin selon

l(~r) =

∫ sB

sA

f(~r, ~̇r; s) ds . (16)

b) Afin de tenir compte de la contrainte que le mouvement s’effectue sur une sphère
de rayon R, on modifie cette fonctionnelle en introduisant un multiplicateur de
Lagrange µ(s), et l’on cherche à minimiser

l(~r) =

∫ sB

sA

(f(~r, ~̇r; s)− µ(t) g(~r, ~̇r; s)) ds . (17)

Donner l’expression de h(~r, ~̇r; s) = f(~r, ~̇r; s)− µ(s) g(~r, ~̇r; s).

c) En déduire que le chemin le plus court est un grand cercle passant par les points
A et B.

3.3. L’atome d’hydrogénoïde

On considère un atome Hydrogénoïde, obtenu en arrachant à un atome tous ses
électrons sauf un. Ces atomes se comportent comme un atome d’Hydrogène avec un
noyau de charge électrique réduite Z > 1.
L’électron est donc soumis au potentiel

V (r) = − Ze2

4πε0r
(18)

a) Donner l’expression du Lagrangien du système en coordonnées sphériques

b) Obtenir les équations d’Euler-Lagrange.

c) Montrer l’existence de quantités conservées. Interpréter.
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3. DM2 Second devoir à la maison

Figure 1. – manuscrit de l’article de Niels Bohr de juillet 1913 (avec la permission
de l’« Archive Niels Bohr », Copenhague)

3.4. Pendule sphérique

On considère une masse m attachée à l’extrémité d’une tige rigide de masse négli-
geable, l’autre extrémité étant fixe par rapport au laboratoire. La longueur de la tige
est R. On note ϕ la colatitude (le pole de la sphère étant choisi à la verticale de son
centre) et θ la longitude (cf. figure 2).

Figure 2. – Schéma d’un pendule sphérique et photographie d’un manège fonction-
nant selon le principe du pendule sphérique.

a) Écrire le Lagrangien pour le pendule sphérique.

b) En déduire que ϕ, définie sur la figure 2, est une variable cyclique. Quelle est la
quantité conservée associée ? Trouvez l’autre quantité conservée.
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3.4. Pendule sphérique

c) Montrer que l’angle θ satisfait une équation de la forme

dθ

dt
= f(θ,E1, E2) (19)

où f est une fonction de θ que l’on déterminera et de deux constantes du mouve-
ment E1 et E2 que l’on interprétera.
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3. DM2 Second devoir à la maison
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4. Corrigé PC 1 : Transformations de
Lorentz

Relativité restreinte (PHY 431)
Pierre Vanhove

PC du 4 novembre 2014

4.2. Le problème d’Einstein

Oui bien sûr, il se verra. Son image dans le miroir sera la même quelque soit sa
vitesse par rapport au sol.
Le coureur ne peut pas de déplacer à une vitesse supérieure ou égale à celle de la

vitesse de la lumière. Donc même avec une vitesse très proche (mais inférieure) à celle
de la lumière, la vitesse de la lumière est la même dans le repère inertiel du coureur.
C’est une conséquence des postulats de la relativité restreintes

• La vitesse de la lumière est constante dans le vide

• Dans deux référentiels inertiels en mouvement relatif non accéléré, les lois de la
physique sont les mêmes.

4.3. Contraction des longueurs et dilatation du temps

À une altitude inférieure à 35 000 m, les muons ont une énergie originelle moyenne
de 6 GeV.

a) L’énergie du muon est E = 6GeV = γmc2 avec γ = 1/(1 − β2)1/2 = 60 donc
v = cβ = 0.999861 c.

b) En cinématique Galiléenne ∆hGal. = v τ0 = 659.452m

c) Dans le référentiel du détecteur la durée de vie est dilatée par les effets relativistes
selon τ = γτ0 = 1.32 10−4 s.

d) Dans le référentiel du détecteur nous avons maintenant ∆hRel. = v τ = γ v τ0 =
39567.1m. Ce qui est supérieur à l’altitude moyenne originale des muons de 6 GeV.

e) Du point de vue du muon la distance à parcourir pour atteindre la Terre s’est
contractée suite aux effets relativistes.
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4. Corrigé PC 1 : Transformations de Lorentz

Figure 1. – Diagramme de Minkowski

4.4. Simultanéité

On veut montrer qu’une transformation de Lorentz peut être visualisée par un
diagramme d’espace-temps, ou diagramme de Minkowski, représenté en figure 1.
Soit un référentiel R′ se déplaçant à une vitesse v par rapport un référentiel R.

a) Les coordonnées du référentiel R′ sont reliées à celle du référentiel R selon

x′ = γ(x− βct) (1)
ct′ = γ(ct− βx) . (2)

L’axes (Oct′) a pour équation x′ = 0 soit x = β ct et l’axe (Ox′) a pour équation
ct′ = 0 soit ct = βx. La pente de l’axe (Ox′) est tanα = β, et la pente de
l’axe (Oct′) est tanα′ = 1/β. Donc tanα = 1/ tanα′. Ce que l’on constate sur le
diagramme puisque α′ = π

2 − α.

b) Dans le référentiel R les rayons lumineux suivent la trajectoire x = ct représentée
par une ligne à 45 degré sur le diagramme. Dans le référentiel R′, l’équation est
x′ = ct′ ce qui donne la même droite, traduisant l’invariance de la trajectoire de
la lumière sous transformations de Lorentz.

c) Les lignes de simultanéité pour le référentiel R sont déterminées par l’équation
ct =cste et représentées par des lignes horizontales. Pour le référentiel R′ les lignes
de simultanéité sont ct′ =cste et représentées par des lignes inclinées d’un angle α
par rapport à l’horizontale. Elles sont parallèles à l’axe (Ox′).
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4.4. Simultanéité

d) Dans le référentiel R deux événements sont simultanés si ∆t = 0. Dans R′ on a
alors c∆t′ = −γβ∆x. Si ∆x > 0 on peut avoir ∆t′ < 0 !

e) Si on dénote par ~ex et ~ect les vecteurs de base unitaires sur les axes (Ox) et (Oct)
respectivement. Et par ~ex′ et ~ect′ les vecteurs de base de norme ε2 = ~ex′ ·~ex′ = ~ect′ ·
~ect′ sur les axes (Ox′) et (Oct′) respectivement. On a que ~ex ·~ex′ = ~ect ·~ect′ = ε cosα
et ~ex · ~ect′ = ~ect · ex′ = ε cos(π2 − α) = ε sinα.

La relation entre les intervalles mesurés dans les deux référentiels est

∆x = ε cosα∆x′ + ε sinα c∆t′ (3)
c∆t = ε sinα∆x′ + ε cosα c∆t′ . (4)

On en déduit pour les intervalles relativistes

∆s2 = ε2(cos2 α− sin2 α) ∆s′2 (5)

Comme tanα = β et cos−2 α = 1 + tan2 α on en déduit que

∆s2 = ε2
1− β2

1 + β2
∆s′2 (6)

Le principe relativité impose que ∆s2 = ∆s′2 ce qui implique le facteur d’échelle
ε vaut

ε =

√
1 + β2

1− β2
. (7)

Figure 2. – (a) Dilatation de la durée c∆tA′B′ vue dans le référentiel R, (b) dilata-
tion de la durée c∆t0A vue dans le référentiel R′.

f) Nous cherchons la relation entre la durée c∆tA′B′ mesurée dans le référentiel R′,
représentée par TA′B′ , et la durée c∆tAB dans le référentiel R, représentée par
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4. Corrigé PC 1 : Transformations de Lorentz

TAB. La relation entre TAB et TA′B′ déduite de la figure 1(a) est

TAB = cosαTA′B′ (8)

en tenant compte du facteur d’échelle ε on a donc que

c∆tAB = ε cosα c∆tA′B′ =
c∆tA′B′√

1− β2
= γ c∆tA′B′ (9)

4.5. Causalité

a) Sur un dessin, on constate qu’un signal se propageant à une vitesse inférieure
ou égale à celle de la lumière émis depuis l’origine, reste dans le cône du futur.
L’origine ne peut recevoir du passé que des signaux se propageant à une vitesse
inférieure à celle de la lumière.

b) La relation E = γmc2 = mc2√
1−β2

implique que si β = v/c > 1 et que l’on veut une

énergie donnée par un nombre réel, E ∈ R, alors m doit être un nombre imaginaire
pur, m ∈ iR.

c) Dans le référentiel R le signal de réponse a pour équation (ct, x) = (ct, βct) avec
β = v/c. L’équation de cette trajectoire dans le référentiel R′ obtenue par une
transformation de Lorentz

ct′ = γ′ (1− β′β) ct (10)
x′ = γ′ (β − β′) ct (11)

β′ :=
v′

c
, γ′ :=

1√
1− β′2

. (12)

La position de l’observateur au moment de la réception du signal mesurée dans le
référentiel R′ est x′ = L′ = γ′ (β − β′) ct donc la durée de propagation du signal
dans le référentiel R′ est ct′ = 1−β′β

β−β′ L
′. Le temps de réception dans R′ est donc

cette durée pour le temps de propagation du signal vers l’origine du référentiel R′

cT ′ = ct′ +
L′

β
=

2β − β′(1 + β2)

β(β − β′) L′ . (13)

i) Si β < 1, le signal se propage moins vite que la vitesse de la lumière, alors
cT ′ > 0 pour 0 < v′ < v, la dernière condition est nécessaire pour que le
signal puisse rattraper l’observateur en mouvement.

ii) Si β = 1, le signal se propage à la vitesse de la lumière, alors cT ′ = 2L′ pour
toutes valeurs v′ < c.

iii) Si β > 1 pour v′ > 2v/(1 + v2) le temps de réception cT ′ < 0 ce qui signifie
que la réponse a été reçue avant d’avoir été émise.
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5. Corrigé PC 2 : Composition des
vitesses et aberration relativiste

Relativité restreinte (PHY 431)
Pierre Vanhove

PC du 18 novembre 2014

5.1. Composition des vitesses

a) La vitesse réduite du mobile M dans le référentiel R est donnée par
~βM/R = (dx/cdt, dy/cdt, dz/cdt) et dans le référentiel R′ par ~βM/R′ =
(dx′/cdt′, dy′/cdt′, dz′/cdt′). Ces vitesses réduites sont reliées par une transfor-
mation de Lorentz. On suppose que le mouvement du mobile est arbitraire dans
le référentiel R′. On suppose aussi que les axes R′ sont parallèles à ceux de R.
Comme le mouvement de R′ se fait selon l’axe (Ox) du référentiel R nous avons

cdt = γ(vR′/R) (cdt′ + βR′/Rdx
′) (1)

dx = γ(vR′/R) (dx′ + βR′/Rcdt
′) (2)

dy = dy′ (3)
dz = dz′ . (4)

On en déduit la loi de composition des vitesses

βxM/R :=
dx

cdt
=

βxM/R′ + βxR′/R
1 + βxR′/Rβ

x
M/R′

(5)

βyM/R :=
dy

cdt
=

1

γ(βR′/R)

βyM/R′

1 + βxR′/Rβ
x
M/R′

(6)

βzM/R :=
dz

cdt
=

1

γ(βR′/R)

βzM/R′

1 + βxR′/Rβ
x
M/R′

. (7)

b) Si le référentiel R′′ est en mouvement par rapport à l’axe (Ox), nous avons alors
en appliquant le raisonnement précédant la loi de composition des vitesses

βxR′′/R =
βxR′′/R′ + βxR′/R
1 + βxR′/Rβ

x
R′′/R′

. (8)
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5. Corrigé PC 2 : Composition des vitesses et aberration relativiste

Pour les rapidités nous avons

tanhφR′′/R =
tanhφR′′/R′ + tanhφR′/R

1 + tanhφR′/R tanhφR′′/R′
(9)

= tanh(φR′′/R′ + φR′/R) . (10)

On en déduit donc que les rapidités sont additives φR′′/R = φR′′/R′ + φR′/R.

c) Le facteur k s’exprime simplement selon

kR′/R =

√
1 + βR′/R
1− βR′/R

=

√
coshφR′/R + sinhφR′/R
coshφR′/R − sinhφR′/R

= eφR′/R . (11)

Donc la composition des vitesse revient à la multiplication des facteurs kR′′/R =
kR′′/R′kR′/R.

d) Dans le cas général on part des transformations de Lorentz

d~r‖ = γ (d~r
′

‖ + ~β cdt′) (12)

d~r⊥ = d~r
′
⊥ . (13)

Donc la vitesse du mobile par rapport au référentiel R est donnée par

(~βM/R)‖ =
(~βM/R′)‖ + ~βR′/R

1 + ~βM/R′ · ~βR′/R
(14)

(~βM/R)⊥ =
(~βM/R′)⊥

γ(βR′/R)(1 + ~βM/R′ · ~βR′/R)
. (15)

e) Si le mobile est aminé d’une vitesse c par rapport au référentielR′ alors ‖~βM/R′‖ =
1. Si on considère alors

‖~βM/R‖2 =
1

(1 + ~βM/R′ · ~βR′/R)2

(
((~βM/R′)‖ + ~βR′/R)2 +

((~βM/R′)⊥)2

γ2(βR′/R)
)

)
.

(16)
Comme ((~βM/R′)‖)2 + ((~βM/R′)⊥)2 = 1 on en déduit que

‖~βM/R‖2 =
1 + 2~βM/R′ · ~βR′/R + (1− ((~βM/R′)⊥)2) (βR′/R)2

(1 + ~βM/R′ · ~βR′/R)2
, (17)

et en utilisant ((~βM/R′)‖)2 (~βR′/R)2 = (~βM/R′ · ~βR′/R)2 on conclut que

‖βM/R‖2 = 1 . (18)

Ce qui montre que le mobile se déplace à la vitesse de lumière par rapport au
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5.2. Effet d’aberration relativiste

référentiel R.

5.2. Effet d’aberration relativiste

5.2.1. Effet torche

Figure 1. – Vue de la source lumieuse en mouvement par l’origine O du référentiel
R. L’angle θ′ est celui sous lequel est vu l’objet par un observateur au
repos dans R′.

a) Dans le référentiel R la vitesse des rayons lumineux est donnée par

vx = c cos θ (19)
vy = c sin θ . (20)

Dans le référentiel R′ on a

v′x = c cos θ′ (21)
v′y = c sin θ′ . (22)

La relation de composition des vitesses donne

vx = c cos θ =
v′x + v

1 + v′xv
c2

= c
cos θ′ + β

1 + cos θ′β
(23)

vy = c sin θ =
v′y

γ (1 +
v′yv

c2
)

= c
sin θ′

γ (1 + β cos θ′)
. (24)

b) Dans la limite Galiléenne, v → 0 alors β → 0, l’effet d’aberration géométrique
disparaît, l’angle de vue θ pour un observateur en mouvement correspond à l’angle
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5. Corrigé PC 2 : Composition des vitesses et aberration relativiste

de vue θ′ pour un observateur fixe par rapport à l’objet

cos θ = cos θ′ (25)
sin θ = sin θ′ , (26)

Dans la limite ultra-relativiste, β → ±1,

cos θ ' cos θ′ ± 1

1± cos θ′
= ±1 (27)

sin θ ' sin θ′

γ (1± cos θ′)
→ 0 . (28)

Lorsque la source s’éloigne β ∼ 1, alors θ ∼ 0 et lorsque la source s’approche
β ∼ −1, alors θ ∼ π. Les rayons lumineux sont concentrés dans la direction de
propagation de la source. D’où le nom d’effet torche.

5.3. Le paradox du mètre incliné

a) On a ici un exemple d’aberration géométrique. On considère qu’à l’instant t =
t′ = 0 où le centre de la règle est à l’origine des référentiels du laboratoire et du
mobile. Pour l’observateur dans la fusée les rayons lumineux venant de l’arrière de
la règle arriveront plus tard que ceux de l’avant de la règle. Ainsi il verra la règle
inclinée au dessus de l’axe (Ox′) dans le sens de son mouvement.

b) On applique les résultats de l’exercice 5.2.1 à l’extrémité droite A de la règle. Dans
le référentiel R′ du mobile la loi de composition des vitesses donne

tanφ′ :=
βy
′

βx′
=

βy

(βx + β)γ
(29)

mais comme la règle est parallèle à l’axe (Ox) alors les rayons lumineux partant
de A suivent un trajectoire avec βx = 0 d’où

tanφ′ =
βy

β γ
(30)

c) Il n’y aura pas de collision car dans le référentiel du mobile le mètre n’est pas
contracté mais la plaque est inclinée avec le coté droit vers le haut.
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5.4. Un conducteur relativiste

5.4. Un conducteur relativiste

a) Comme on s’approche du feu on applique la formule de l’effet Doppler relativiste
νobs = νsource/(γ (1− β cos θ)) avec θ = 0 donc

νvert =
νrouge

γ(1− β)
=

√
1 + β

1− β νrouge (31)

Comme ν = c/λ alors √
1 + β

1− β =
λrouge

λvert
(32)

Ce qui donne avec λrouge = 700nm et λvert = 546nm

β = 0.24 c ' 73 106m/s . (33)

27



5. Corrigé PC 2 : Composition des vitesses et aberration relativiste

28



6. Corrigé PC 3 : Principes
variationnels, équations
d’Euler-Lagrange

Relativité restreinte (PHY 431)
Pierre Vanhove

PC du 25 novembre 2014

6.1. Le pendule simple

Le lagrangien du pendule simple est donné par la somme L1 +L2 du lagrangien du
point de masse m1

L1 =
m1

2
ẋ2 (1)

et la masse du pendule a pour coordonnées x2 = x + l sinϕ et y2 = −l cosϕ (si
l’on suppose que le rail à pour position y = 0), le pendule est soumis à la force de
gravitation de potentiel V2 = mgy2 (puisque l’orientation de y est vers le haut) donc
puisque L2 = T2 − V2

L2 =
m2

2
(ẋ2

2 + ẏ2
2)−mgy2 (2)

=
m2

2
ẋ2 +

m2

2

(
l2ϕ̇2 + 2lẋϕ̇ cosϕ

)
+m2gl cosϕ (3)

6.2. Temps propre et équations de Euler-Lagrange

a) La densité de Lagrangien est donnée par L(xµ, ẋµ) = ηµν ẋ
µẋν . Les équations

d’Euler-Lagrange s’écrivent

d

ds

∂L(xµ, ẋµ)

∂ẋµ
=
∂L(xµ, ẋµ)

∂xµ
(4)

soit
d

ds
(ηµν ẋ

ν) = 0 (5)

donc
ẋµ = aµ (6)
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est constante ce qui s’intègre en

xµ = aµs+ xµ0 . (7)

Ceci est la représentation paramétrique d’une mouvement rectiligne uniforme
puisque

x0 = ct = a0s+ b0 (8)
~x = ~as+~b (9)

ce qui implique

~x = ~a
ct− b0
a0

+~b . (10)

b) Le temps propre est donné par cdτ =
√
ηµν ẋµẋν ds. La densité de Lagrangien est

donc L =
√
ηµν ẋµẋν . Les équation d’Euler-Lagrange donnent

d

ds

(
ẋµ√

ηµν ẋµẋν

)
= 0 (11)

c’est-à-dire
ẋµ√

ηµν ẋµẋν
= aµ (12)

est constant. Ceci implique que ηµνaµaν = 1, et que ẋµ est le vecteur constant aµ

multiplié par une fonction arbitraire de s

ẋµ = aµ ϕ(s) . (13)

En faisant un changement de variable sur la paramètre s tel que ds′/ds = ϕ(s)
alors

dxµ

ds′
= aµ (14)

ce qui est la cas étudié dans la question précédente, où l’on a montré que cela
implique un mouvement rectiligne uniforme.

On constate bien sûr que s′ est le temps propre car

f(s) =

√
ηµν

dxµ

ds

dxν

ds
(15)

de sorte que

ds′ = ds

√
ηµν

dxµ

ds

dxν

ds
=
√
ηµνdxµdxν (16)

ce qui permet de conclure à l’identification entre s′ et le temps propre.
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6.3. Formule de Beltrami

6.3. Formule de Beltrami

On considère une fonctionelle de la forme

U(y) =

∫ x1

x0

F (y(x), ẏ(x), x)dx (17)

où y est une fonction de x et ẏ := dy/dx. On cherche les configurations y(x) qui
rendent cette fonctionnelle extrémale, x0 et x1 étant fixées.

a) On écrit que
dU = U(y0 + η)− U(y0) = 0 . (18)

C’est-à-dire que

0 =

∫ x1

x0

(F (y0 + η, ẏ0 + η̇, x)− F (y0, ẏ0, x)) dx (19)

=

∫ x1

x0

(
η
∂F

∂y
+ η̇

∂F

∂ẏ

)
dx (20)

=

∫ x1

x0

(
∂F

∂y
− d

dx

∂F

∂ẏ

)
η dx+

[
η
∂F

∂ẏ

]x1

x0

. (21)

Pour obtenir la dernière ligne nous avons procédé à une intégration par partie.
Avec pour conditions aux limites que les positions x0 et x1 sont fixées on a η(x0) =
η(x1) = 0 alors

dU = 0 =

∫ x1

x0

(
∂F

∂y
− d

dx

∂F

∂ẏ

)
η(x) dx , (22)

comme cette équation est valable pour tout choix de la fonction η(x) alors

∂F

∂y
− d

dx

∂F

∂ẏ
= 0 . (23)

On aurait aussi pu travailler avec d’autres conditions aux limites où les extrémités
sont libres mais les variations de F sont nulles ∂F (x)/∂ẏ = 0 pour x = x0 et
x = x1.

b) On considère
dE

dx
=

d

dx

(
ẏ
∂F

∂ẏ

)
− dF

dx
. (24)

Puisque ∂F/∂x = 0 alors
dF

dx
=
∂F

∂y
ẏ +

∂F

∂ẏ
ÿ . (25)
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Ainsi

dE

dx
= ÿ

∂F

∂ẏ
+ ẏ

d

dx

∂F

∂ẏ
−
(
∂F

∂y
ẏ +

∂F

∂ẏ
ÿ

)
(26)

= ẏ

(
d

dx

∂F

∂ẏ
− ∂F

∂y

)
. (27)

Qui est nul par les équations d’Euler-Lagrange pour F .

c) Le lagrangien du système est donné par L = mẋ2

2 − V (x). Posons p = ∂L
∂ẋ = mẋ.

Alors les équation d’Euler-Lagrange impliquent que dp
dt = ∂L

∂x = −V ′(x). On voit
que p ainsi définit est l’impulsion. La fonctionnelle de Beltrami est donnée par

E = pẋ− L =
mẋ2

2
+ V (x) (28)

ce qui est la somme de l’énergie cinétique et potentielle de la particule. La formule
de Beltrami assure que dE/dt = 0 ce qui est la condition de conservation de
l’énergie.

6.4. Brachistochrone

a) On écrit la conservation de l’énergie. L’énergie initiale est E = mgh. À une altitude
z l’objet a une vitesse v alors E = mv2

2 +mgz. Comme v2 = (dx/dt)2 +(dz/dt)2 =
(1 + (dz/dx)2) (dx/dt)2 On trouve que

m

2

(
dx

dt

)2

(1 + ż2) = mg(h− z) (29)

où ż = dz/dx. Ainsi
dx

dt
=

√
2g
h− z
1 + ż2

. (30)

Donc

T (z) :=

∫ fin

début
dt =

∫ d

0

√
1 + ż2

2g(h− z) dx . (31)

b) On constate que f =
√

1+ż2

2g(h−z) ne dépend pas de x. Donc est nulle la variation
par rapport à x de la fonctionelle de Beltrami

E = ż
∂f

∂ż
− f . (32)

Puisque
∂f

∂ż
=

ż√
2g(h− z)(1 + ż2)

, (33)
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6.5. Caténoïde

on déduit que
1√

1 + ż2
=
√

2g(h− z) E . (34)

On peut réécrire cette équation

1 + ż2 =
K

h− z , K :=
1

2gE2
. (35)

En posant ż = tan(θ/2), comme 1 + ż2 = (cos θ2)−2. Alors z = h−K cos2(θ/2) =
h−K(1 + cos θ)/2. Puisque

ż =
dz

dx
=
dz

dθ

dθ

dx
(36)

alors
dx

dθ
= K cos2 θ

2
. (37)

En intégrant ces équations on trouve

x = x0 +
K

2
(θ + sin θ) (38)

z = h− K

2
(1 + cos θ) . (39)

Les conditions initiales sont pour θ = −π alors z = h et x = x0 − Kπ
2 = 0 donc

x0 = Kπ
2 . Une représentation graphique est donnée en figure 1

c) Considérons à nouveau la fonctionnelle temps T =
∫
f dx de l’équation (31). Alors

avec le changement de variable considéré on trouve que

f(z, ż) dx =
1

2gE dθ (40)

Ainsi
T =

θfinal − θinitial
2gE =

π

2gE . (41)

Le résultat ne dépend que de la grandeur conservée E qui est une constante indé-
pendante de x, ce qui signifie que le temps de descente est indépendant du point
d’où l’objet est lâché.

6.5. Caténoïde

a) Clairement la surface de la bulle de savon est donnée par

S =

∫ h

−h
2πr(z) d`(z) , (42)
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Figure 1. – plusieur arches représentant (x(θ), z(θ)) pour θ ∈ [−π, 4π].

avec

d`(z)2 = dr2 + dz2 = dz2 (1 +

(
dr

dz

)2

) . (43)

Posons ṙ = dr/dz. Donc la surface est donnée

S = 2π

∫ h

−h
r(z)

√
1 + ṙ(z)2 dz . (44)

b) L’équation d’Euler-Lagrange est d(∂L/∂ṙ)/dz = ∂L/∂r avec L = 2π r
√

1 + ṙ2 ce
qui donne

d

dz

rṙ√
1 + ṙ2

=
√

1 + ṙ2 , (45)

ce qui implique que
rr̈ − ṙ2 − 1

(1 + ṙ2)
3
2

= 0 . (46)

Comme la fonctionnelle est indépendante de z alors est conservée la quantité de
Beltrami

K = ṙ
∂L
∂ṙ
− L = − r√

1 + ṙ2
. (47)

c) En combinant l’équation (47) et l’équation d’Euler-Lagrange (45) on trouve que

r̈ =
r

K2
(48)

Donc
r(z) = α exp(

z

K
) + β exp(− z

K
) . (49)

On souhaite que r(h) = r(−h) = R et que r(−z) = r(z) pour tout −h ≤ z ≤ h,
on en déduit que r(z) = α′ cosh(z/K). En réinjectant cette expression dans la
relation de conservation (47) on trouve

1 + ṙ2 = 1 +
α′2

K2
sinh2 z

K
=
α′2

K2
cosh2 z

K
(50)
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6.5. Caténoïde

ce qui implique que α′ = K. L’équation d’une caténoïde est donc

r(z) = K cosh
z

K
. (51)

La condition que pour z = ±h le rayon vaut celui des cercles donne

R = K cosh
h

K
. (52)

Pour K → 0 et K → ∞ le membre de droite tend vers +∞. Il y a un minimum
pour tanh h

K = K
h soit h ∼ 1.9968K. Il y a un donc un rayon minimal, pour que la

caténoïde puise existe R > h sinh h
K . Pour R satisfaisant cette relation l’équation

a deux solutions pour K comme le montre le graphique ci-dessous

2 4 6 8 10

2

4

6

8

10

12

14

Figure 2. – Représentation de l’équation R = K cosh(h/K)
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7. Corrigé PC 3 : Espace–temps et
formalisme quadri-dimensionnel

donnée en 2012 et 2013
Relativité restreinte (PHY 431)

Pierre Vanhove
PC du 22 novembre 2013

7.1. Quadri-vecteurs vitesse et accélérations

Le quadri-vecteur accélération A est défini comme la dérivée du quadri-vecteur
vitesse V par rapport au temps propre τ : A = dV/dτ .

a) Par définition V := dr/dτ comme dr = (cdt, d~r) et en utilisant la relation entre le
temps propre et le temps t dτ = dt/γ on en déduit que V = γ (c,~v). La norme de
ce quadri-vecteur V2 = (V 0)2 − (V 1)2 − (V 2)2 − (V 3)2 = γ2 (c2 − ~v2) = c2.

b) L’accélération est définie par A = dV/dτ on en déduit que

A = γ
dV

dt
= γ (

dγ

dt
c,
dγ

dt
~v + γ ~a). (1)

avec
dγ

dt
=
γ3

c2
~v · ~a . (2)

Pour calculer A·V on peut procéder de deux façons. La première est de différentier
V2 = c2 par rapport à τ pour obtenir A · V = 0. Ou de faire le calcul direct à
partir des composantes

A ·V = γ2 (
dγ

dt
(c2 − ~v2)− γ~a · ~v) (3)

= γ2 (
dγ

dt

c2

γ
− γ~a · ~v) (4)

= 0 . (5)

c) On définit le quadri-vecteur d’énergie-impulsion P = mV = γm(c,~v). On a que
P·P = m2V2 = m2c2. Par définition les composantes du quadri-vecteur impulsions
sont P = (E/c, γm~v) on a donc que E = γ mc2.
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7. Corrigé PC 3 : Espace–temps et formalisme quadri-dimensionnel

d) Puisque A · V = 0 on en déduit que A · P = 0 donc P2 est une constante. On
en déduit que E2/c2 − γ2m2~v2 est une constante. Nous avons vu à la question
précédente que cette constante vaut m2c2. Donc E2/c2 = m2c2(1 + γ2~v2/c2) =
m2c2(1 + ~β2/(1− ~β2)) = γ2m2c2.

Ces relations sont très importantes pour obtenir des quantités conservées en ci-
nématique relativiste (chocs et diffusions entre particules, créations de particules,
. . .).

7.2. Cylindre en rotation

a) La transformation de Lorentz entre R et R′ est donnée par

ct′ = γ(ct− βx) (6)
x′ = γ (x− β ct) (7)
y′ = y (8)
z′ = z , (9)

donc dans R′ nous avons (y′)2 + (z′)2 = y2 + z2 = ρ2 donc le cylindre a toujours
le rayon ρ dans le référentiel R′. La longueur est contractée car si dans R on a
L = xB − xA où A et B sont les extrémités du cylindre. Dans R′ on a

L′ = x′B − x′A = γ(xB − xA − βc(tB − tA)) (10)

mais dans R′
c(t′B − t′A) = 0 = γ(c(tB − tA)− β(xB − xA)) (11)

donc
L′ = x′B − x′A = γ(1− β2) (xB − xA) =

L

γ
. (12)

b) Dans le référentiel fixe R un point marqué sur le cylindre a pour équation tempo-
relle

PR = (x, ρ cos(ωt), ρ sin(ωt)) . (13)

Avec les relation de changement de référentiel ct = γ (ct′ + βx′) on a dans le
référentiel R′

PR′ = (x′, ρ cos(ωγ(t′ + βx′/c)), ρ sin(ωγ(t′ + βx′/c))) . (14)

On voit donc que le cylindre tourne maintenant à la vitesse angulaire ωγ et que
les points sont décalés d’un angle α = ωγβ/c.
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8. Corrigé PC 4 : Invariances et lois de
conservation ; théorie lagrangienne
relativiste

Relativité restreinte (PHY 431)
Pierre Vanhove

PC du 2 décembre 2014

8.1. Lagrangien du champ électromagnétique

a) Par définition Fµν = ∂µAν − ∂νAµ donc

∂ρFµν + ∂µF νρ + ∂νF ρµ (1)
= ∂ρ(∂µAν − ∂νAµ) + ∂µ(∂νAρ − ∂ρAν) + ∂ν(∂ρAµ − ∂µAρ) = 0 , (2)

où l’on a utilisé que ∂µ∂ρAν = ∂ρ∂µAν .

b) Par définition de la métrique (−,−,−) on a que wi = −wi pour i = 1, 2, 3. Ainsi
le produit scalaire ~v · ~w = −∑3

i=1 v
iwi = viwi.

c) Par définition

wi =
1

2
εijkf

jk = εijk∂
jvk . (3)

Le produit vectoriel entre deux vecteurs ~x et ~y est définit par

~x× ~y =



x2y3 − x3y2

x3y1 − x1y3

x1y2 − x2y2


 . (4)

C’est-à-dire que (~x× ~y)i =
∑3

j,k=1 εijkx
jyk pour i = 1, 2, 3. Donc les composantes

covariantes
(~x× ~y)i = −(~x× ~y)i = −εijkxjyk . (5)

On applique avec ~x = ~∇ := (∂/∂xi = ∂i = −∂i) et ~y = ~v pour obtenir wi =(
~∇× v

)
i
.

d) On écrit les équations (1) en composantes

∂0F ij + ∂iF j0 + ∂jF 0i = 0, i, j = 1, 2, 3 . (6)
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8. Corrigé PC 4 : Invariances et lois de conservation ; théorie lagrangienne relativiste

En lisant les composantes de Fµν on constate que Bi = 1
2εijkF

jk et F i0 = Ei/c =
−F 0i On a ainsi que

1

2
∂0εkijF

ij +
1

2
εkij∂

iE
j

c
− 1

2
εkij∂

jE
i

c
= 0 (7)

c’est-à-dire
c∂0Bk + εkij∂

iEj = 0 (8)

comme εkij∂iEj = (~∇× ~E)k d’après la question précédante et puisque c∂0 = ∂/∂t
on en déduit que

~∇× ~E +
∂ ~B

∂t
= 0 . (9)

On examine les équations

∂iF jk + ∂jF ki + ∂kF ij = 0 (10)

ce qui implique que

1

2
εijk

(
∂iF jk + ∂jF ki + ∂kF ij

)
= 0 (11)

c’est-à-dire
∂iBi + ∂jBj + ∂kBk = ~∇ · ~B = 0 . (12)

e) En supposant que

~B = ~∇× ~A (13)

~E = −~∇φ− ∂ ~A

∂t
. (14)

On vérifie que les équations de Maxwell sont satisfaites

~∇ ·
(
~∇× ~A

)
=

3∑

i=1

∂i(~∇× ~A)i = −
3∑

i,j,k=1

∂i
(
εijk∂

jAk
)

= 0 , (15)

car εijk∂i∂jAk = 0 puisque ε est antisymétrique en les indices i et j et les dérivées
partielles commutent. Également

~∇×
(
−~∇φ− ∂ ~A

∂t

)
= − ~∇× (~∇φ)︸ ︷︷ ︸

=0

−∂
~∇× ~A

∂t
= −∂

~B

∂t
(16)

f) Ajoutant à ~A la quantité ~∇χ laisse invariant le champs magnétique ~B car ~∇ ×
(~∇χ) = 0. Pour ~E on considère la variation de la définition sous la transformation
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8.1. Lagrangien du champ électromagnétique

de jauge

δ ~E = −~∇∂χ
∂t

+
∂~∇χ
∂t

= 0 . (17)

g) Un calcul direct donne que

FµνFµν = 2
3∑

i=1

F 0iF0i +
3∑

i,j=1
i 6=j

F ijFij (18)

= −2

(
~E2

c2
− ~B2

)
. (19)

On constate ainsi que ~E2

c2
− ~B2 est un invariant relativiste.

h) En réinjectant les expressions pour les champs électrique et magnétique en fonction
des potentiels, le lagrangien prend la forme

L =
1

2µ0


 1

c2

(
~∇φ+

∂ ~A

∂t

)2

− (~∇× ~A)2


− %φ+ ~ · ~A . (20)

On calcule les variations du lagrangien par rapport aux potentiels

∂L
∂φ

= − 1

µ0c2
~∇ ·
(
~∇φ+

∂ ~A

∂t

)
− % (21)

∂L
∂ ~A

= ~− 1

µ0

~∇× (~∇× ~A) . (22)

On calcule aussi

∂L
∂φ̇

= 0 (23)

∂L
∂ ~̇A

=
1

µ0c2

(
∂ ~A

∂t
+ ~∇φ

)
. (24)

On a donc l’équation d’Euler-Lagrange pour φ

d

dt

∂L
∂φ̇

=
∂L
∂φ

(25)

qui donne

− ~∇ ·
(
~∇φ+

∂ ~A

∂t

)
= µ0c

2% , (26)

En utilisant la définition du champ électrique en fonction des potentiels on constate
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8. Corrigé PC 4 : Invariances et lois de conservation ; théorie lagrangienne relativiste

que l’équation (26) donne

~∇ · ~E = µ0c
2% =

%

ε0
(27)

Pour le potentiel vecteur ~A
d

dt

∂L
∂ ~̇A

=
∂L
∂ ~A

(28)

implique que

~∇× (~∇× ~A) +
1

c2

(
∂2 ~A

∂t2
+ ~∇∂φ

∂t

)
= µ0~ . (29)

En utilisant la définition du champ magnétique en fonction des potentiels on
constate que l’équation (29) donne

~∇× ~B − 1

c2

∂ ~E

∂t
= µ0~ . (30)

En utilisant la condition de jauge ~∇ · ~A + 1
c2
∂φ
∂t = 0 on déduit que les potentiels

satisfont une équation d’onde
(

∆− 1

c2

∂2

∂t2

)
φ = −µ0c

2% (31)
(

∆− 1

c2

∂2

∂t2

)
~A = −µ0~ . (32)

Avec ∆ = ~∇2 le Laplacien. Le permittivité du vide ε0 et la perméabilité du vide
µ0 sont reliées par la relation µ0ε0c

2 = 1.

i) Sous la transformation de jauge FµνFµν est invariant. Donc pour toutes fonction
χ(t, ~x) on a

δjaugeL =

∫ (
−%∂χ

∂t
+ ~ · (−~∇χ)

)
dtd3~x (33)

=

∫
χ

(
∂%

∂t
+ ~∇ · ~

)
dtd3~x . (34)

où nous avons intégré par partie en supposant que les termes de bord s’annulent.
On voit donc que le lagrangien est invariant si et seulement si

∂%

∂t
+ ~∇ · ~ = 0 . (35)

Il sera démontré dans le second devoir à la maison que cette équation de continuité
est une conséquence des équation de Maxwell.
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8.2. Lagrangien d’une particule dans un champ électromagnétique

8.2. Lagrangien d’une particule dans un champ
électromagnétique

a) On calcule le moment conjugué

~p =
∂L
∂~v

=
m~v√
1− ~v2

c2

+ q ~A . (36)

Les équations d’Euler-Lagrange donnent

d~p

dt
=
∂L
∂~r

= −q
(
~∇φ− ~∇(~v · ~A)

)
. (37)

On remarque
d ~A

dt
=
∂ ~A

∂t
+~(v · ~∇) ~A . (38)

donc si on pose γ = 1/
√

1− ~v2

c2
on a

d

dt
(γm~v) = −q

(
~∇φ+

∂ ~A

∂t
+
(
~∇(~v · ~A)− (v · ~∇) ~A

))
. (39)

Comme
~v × ~B = ~v × (~∇× ~A) = ~∇(~v · ~A)− (~v · ~∇) ~A , (40)

et puisque ~E = −~∇φ− ∂ ~A/∂t on en déduit que

d

dt
(γm~v) = q ~E + q ~v × ~B . (41)

b) La relation de conservation de l’énergie mc2 = (E/c)2−~p2 avec ~p = γ m~v implique

0 =
2

c2
E dE
dt
− 2~p · d~p

dt
(42)

=
2

c2
E dE
dt
− 2q~p · ~E . (43)

Donc
dE
dt

= q~v · ~E . (44)

On retrouve le résultat que seul la force électrique contribue au travail.

c) On peut maintenant combiner les deux équations (44) et (41) en une seule sur le
quadri-vecteur impulsion P selon

dP

dτ
=
dt

dτ

(
dE
cdt

d(γm~v)
dt

)
= γ

(
q~v · ~Ec

q ( ~E + ~v × ~B)

)
. (45)
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Comme le quadri-vecteur vitesse a pour composantes U = γ(c,~v) on en déduit
que

dPµ

dτ
= qFµνUν , µ = 0, 1, 2, 3 . (46)

d) Le premier temps de l’action décrit l’évolution de la particule le long de sa ligne
d’univers donc

−mc2

∫ t2

t1

γ dt = −mc2

∫ τ2

τ1

dτ , (47)

où nous avons utilisé la relation dτ = dt/γ =
√

1− ~v2/c2 dt entre le temps t
et le temps propre τ . En introduisant le quadri-vecteur A = (φ/c, ~A), comme le
quadri-vecteur vitesse U = γ (c,~v) alors U ·A = γ (φ− ~v · ~A), et le second terme
de l’action s’écrit

− q
∫ t2

t1

q(φ− ~v · ~A)dt = −q
∫ t2

t1

U ·A dt

γ
= −q

∫ τ2

τ1

U ·A dτ . (48)

De cette formulation on déduit facile les équations du mouvement obtenues pré-
cédemment

Pour cela on remarque que U2 = c2 donc le lagrangien s’écrit

L = −
(
mU2 + qU ·A

)
. (49)

En utilisant que U2 = uµuµ varions par rapport à xµ et uµ =
dxµ
dτ . Les équations

d’Euler-Lagrange donnent

d

dτ

∂L
∂Uµ

= −mduµ

dτ
− q dA

µ

dτ
(50)

=
∂L
∂xµ

= −qUν∂µAν (51)

Ce qui implique que

dPµ

dτ
= q

(
Uν∂

µAν − dAµ

dτ

)
(52)

= qUν (∂µAν − ∂νAµ) . (53)

Comme Fµν = ∂µAν − ∂νAµ on retrouve bien les équations du mouvement.
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9. Corrigé PC5 : Mécanique relativiste

Relativité restreinte (PHY 431)
Pierre Vanhove

PC du 9 décembre 2014

9.1. Théorème de la composante nulle

a) On suppose que A = (0, ~A) dans tous les référentiels Lorentziens. Écrivons la
transformation de Lorentz entre deux référentielsR etR′. La loi de transformation
est celle vue en PC 3 (et le rappel donné dans la feuille de PC)

0 = γ (0− ~β · ~A) (1)

~A′ = ~A+ γ ~β

(
γ

γ + 1
~β · ~A

)
. (2)

Où l’on a utilisé que les composantes temporelles sont nulles dans tous les réfé-
rentiels. En utilisant la première équation on en déduit que ~A = ~A′ qui dans la
première équation donne ~β · ~A = 0 pour tout ~β. On déduit donc que ~A = 0 et que
A = 0. On le résultat aussi qu’un quadri-vecteur dont les composantes spatiales
sont nulles dans tous les référentiels. Alors le quadri-vecteur est nul.

Nous avons bien sûr, un résultat équivalent pour un quadri-vecteur dont les com-
posantes spatiales sont nulles dans tous les référentiels.

b) Soit P = (P 0, ~P ) un quadri-vecteur de genre temps P · P > 0. On cherche un
référentiel ou ~P = 0. On considère une transformation de Lorentz telle qu’il existe
un référentiel où ses composantes sont données par P = (P 0′,~0)

P 0 = γ P 0′ (3)
~P = γ ~β P 0′ . (4)

Donc on voit si l’on choisit pour la vitesse relative réduite du référentiel R′

~β =
~P

P 0
. (5)

Dans le référentiel R′ le quadri-vecteur aura ~P ′ = 0. On vérifie bien sûr que

P2 = (P 0′)2 =
(P 0)2

γ2
= (P 0)2 (1−

~P 2

(P 0)2
) = (P 0)2 − ~P 2 . (6)

45



9. Corrigé PC5 : Mécanique relativiste

c) Pour la quadri-vecteur Ptot = Pf − Pi a pour composantes Ptot = (Efinale −
E initiale, ~P f − ~P i). La conservation de l’énergie Efinale − E initiale = 0 est vérifiée
dans tous les référentiels donc dans tous les référentiels la composante temporelle
de Ptot est nulle. D’après la question a) on en déduit que sa composante spatiale
est nulle. C’est-à-dire que nous avons la conservation de l’impulsion dans tous les
référentiels.

9.2. Masse invariante et référentiel du centre de masse

Considérons un système de particules libres de masses mi.

a) On calcule (P1 + P2)2

(P1 + P2)2 = P2
1 + P2

2 + 2P1 ·P2 (7)

Dans le référentiel où la particule 1 est au repos P1 = (P 0
1 , 0) donc

(P1 + P2)2 = P2
1 + P2

2 + 2P 0
1P

0
2 . (8)

Comme P 0
i ≥

√
P2
i avec i = 1, 2 pour un particule de genre temps où lumière

(dans ce cas on a égalité). Donc

(P1 + P2)2 ≥ (
√
P2

1 +
√
P2

2)2 (9)

d’où le résultat. Pour un système de plusieurs particules telles que Pi = (mic)
2,

on a donc que √
P2

tot ≥
∑

i

√
P2
i =

∑

i

mic. (10)

b) Si les particules sont au repos les unes par rapport aux autres alors Pi = (Ei/c, 0)
et Ptot =

∑
iPi = (

∑
i Ei/c, 0) = (

∑
imic, 0). Donc s = (Ptot)2 = (

∑
imic)

2.

c) Par définition Ptot = P1 + P2. On a que s = (P1 + P2)2. On suppose que les
deux particules forment un état lié de masse mt donc s = (mtc)

2. On développe
l’expression pour s

s = P2
1 + P2

2 + 2P1 ·P2 (11)
= (m1c)

2 + (m2c)
2 + 2m1cP

0
2 (12)

où l’on a utilisé que la particule 1 est au repos donc P1 = (m1c, 0). L’énergie de
la particule 2 est E2 = P 0

2 c

E2 =
m2
t −m2

1 −m2
2

2m1
c2 . (13)

46



9.3. Effet Compton

d) L’énergie totale du système initial est

Etot = m1c
2 + E2 =

m2
t +m2

1 −m2
2

2m1
c2 . (14)

Dans le référentiel du centre de masse Ptot = (mtc,~0)CM et dans le référentiel du
laboratoire Ptot = γCM(mtc, ~pt). Donc γCMmtc = Etot/c d’où

γCM =
m2
t +m2

1 −m2
2

2m1mt
. (15)

Comme γCM ≥ 1 il faut que

m2
t +m2

1 −m2
2

2m1mt
≥ 1⇔ mt ≥ m1 +m2 . (16)

La masse total est supérieure à la masse des constituants car entre en jeu l’énergie
de liaison. Dans la limite non relativiste on a γCM ' 1 donc mt ' m1 +m2.

e) Pour cela on applique la question b) de l’exercice précédant donc

~vCM = βCM c =
~ptot
P 0
tot

c =
~ptotc

2

Etot
. (17)

f) On calcule donc

γCM =
1√

1− ~p2
totc

2

E2
tot

=
Etot

c
√
E2
tot/c

2 − ~p2
tot

(18)

en utilisant que E2
tot/c

2− ~p2
tot = P2

tot = (mtc)
2 et l’expression déduite à la question

d) pour l’énergie totale donc

γCM =
m2
t +m2

1 −m2
2

2m1mt
. (19)

9.3. Effet Compton

On considère la diffusion de rayon X sur du graphite. On considère un électron
e− au repos percuté par un photon γ. Après le choc le photon et l’électron diffusent.
Nous avons la réaction suivante

γ + e− → γ + e− (20)

a) La relation de conservation de l’impulsion donne que

Pi
γ + Pi

e− = Pf
γ + Pf

e− . (21)
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Avec l’impulsion initiale et finale du photon

Pi
γ =

(
Ei
c = ~ωi

c

~pi = ~~ki

)
(22)

Pf
γ =

(
Ef
c =

~ωf
c

~pf = ~~kf

)
(23)

L’électron initial est au repos donc

Pi
e− =

(
mec

0

)
(24)

et l’électron final a pour impulsion

Pf
e− =

(Ef
c
~pf

)
. (25)

La relation de conservation de la quadri-impulsion donne

~(ωi − ωf ) = Ef −mec
2 . (26)

La conservation de l’impulsion

~ (~ki − ~kf ) = pf . (27)

b) Avec les expression données précédemment on trouve que

(Pi
γ −Pf

γ)2 = (Pi
γ)2 + (Pf

γ)2 − 2Pi
γ ·Pf

γ (28)

Pour le photon nous avons (Pi
γ)2 = (Pf

γ)2 = 0 donc

(Pi
γ −Pf

γ)2 = −2~2
(ωiωf
c2
− ~ki · ~kf

)
(29)

= −2~2 ωiωf
c2

(1− cos θ) , (30)

où l’on a utilisé ~ki · ~kf = |ki| |kf | cos θ et |ki| = ωi/c et |kf | = ωf/c.

c) On calcule

(Pi
e− −Pf

e−)2 = (Pi
e−)2 + (Pf

e−)2 − 2Pi
e− ·P

f
e− (31)

= 2me(mec
2 − Ef

e−) , (32)

La conservation de l’énergie implique Ef
e− = ~ (ωi − ωf ) +mec

2. Donc

(Pi
e− −Pf

e−)2 = 2me~ (ωf − ωi) . (33)
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d) On écrit maintenant que (Pi
e− −Pf

e−)2 = (Pi
γ −Pf

γ)2. Donc

2me~ (ωf − ωi) = −2~2 ωiωf
c2

(1− cos θ) . (34)

donc

1− cos θ =
mec

2

~

(
1

ωf
− 1

ωi

)
(35)

Comme λ = 2πc/ω d’où

1− cos θ =
mec

h
(λf − λi) = mec

2

(
1

Ef
− 1

Ei

)
. (36)

En déduire la relation entre l’angle de diffusion et la différence des longueur d’ondes
des photons initial et final. On rappelle que E = hc/λ.

On constate que pour une énergie initiale donnée Ei l’énergie finale Ef est minimale
(ou la longueur d’onde λf est maximale) lorsque 1− cos θ est maximal donc θ = π,

1

Ef
=

1

Ei
+

2

mec2
. (37)

Pour une source de Césium 137 émettant des photons d’énergie E iγ = 662KeV ,
l’énergie des photons finaux est maximale, lorsque λf est minimale. Ce qui est réalisé
pour θ = π. On trouve alors Efγ = 184.35KeV .
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10. Corrigé PC 6 : Relativité et
électromagnétisme

Relativité restreinte (PHY 431)
Pierre Vanhove

PC du 16 décembre 2014

10.1. Loi de transformations

a) Les champs électrique et magnétique sont les composantes du tenseur électroma-
gnétique

Fµν :=




0 −Ex/c −Ey/c −Ez/c
Ex/c 0 Bz −By
Ey/c −Bz 0 Bx
Ez/c By −Bx 0


 . (1)

La loi de transformation de ce tenseur est

F ′µν = ΛµρΛ
ν
σ F

ρσ (2)

avec l’expression d’un transformation de Lorenz générale

Λ0
0 = γ (3)

Λ0
i = −γβi, i = 1, 2, 3 (4)

Λi0 = = −γβi, i = 1, 2, 3 (5)

Λij = δij +
γ

γ + 1
βiβj . (6)

En appliquant cette transformation et en utilisant les identifications F 0i = −Ei
et Bi = 1

2εijkF
jk on trouve la loi de transformation des champs.

Pour le cas d’une transformation de Lorentz selon l’axe (Ox) on a

Λ =




γ −γ β 0 0
−γ β γ 0 0

0 0 1 0
0 0 0 1


 , (7)
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on vérifie que

−E′x/c = F ′ 0x = Λ0
µΛxνF

µν (8)
= (γF 0ν − γ βF xν) Λxν (9)
= (γ2 − γ2β2) (−Ex/c) = −Ex/c (10)

et

−E′ y/c = F ′ 0y = Λ0
µΛyνF

µν (11)
= (γF 0ν − γ βF xν) Λyν (12)
= γF 0y − γ βF xy (13)
= −γEy/c− γ βBz . (14)

b) On a vu en PC4 que I1 = ~E2/c2 − ~B2 = −FµνFµν/2 et dans le second devoir
à la maison que I2 = ~E · ~B = −cεµνρσFµνFρσ/8 donc ces quantités sont bien
invariantes de Lorentz. Sinon on peut vérifier en utilisant les lois de transformations
précédentes que ces quantités sont invariantes.

c) S’il existe un référentiel R′ où ~E′ = 0, dans ce référentiel I2 = ~E′ · ~B′ = 0 et
I1 = −( ~B′)2. Donc il faut que dans tous les référentiels R que le champ électrique
soit orthogonal au champ magnétique, et que ~E2 ≤ c2 ~B2. En utilisant les trans-
formations de Lorentz entre le référentiel R′ et R on trouve que ~E = −c ~β × ~B.
On vérifie bien que I2 = ~E · ~B = 0 et que I1 = −( ~B2/γ2 + (~β · ~B)2) < 0

d) Dans l’approximation Galiléenne au premier ordre en v/c on trouve que

~E′‖ = ~E‖; ~E′⊥ = ~E⊥ + ~v × ~B⊥ (15)

~B′‖ = ~B‖; ~B′⊥ = ~B⊥ −
~v × ~E⊥
c2

. (16)

donc

~E′ = ~E + ~v × ~B (17)

~B′ = ~B − ~v × ~E

c2
. (18)

e) On prend le champ selon l’axe (Oy) et on fait une transformation de Lorentz selon
l’axe (Oz) avec ~B = 0. Donc

E′x = 0 (19)
E′y = γ Ey (20)
E′z = 0 , (21)
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et

B′x =
γ β

c
Ey (22)

B′y = 0 (23)
B′z = 0 , (24)

comme ~E′ = γ ~E on trouve donc que

~B′ = −
~β

c
× ~E′ . (25)

Dans la limite ultra-relativiste, on a une configuration avec c ~B = ~n× ~E et ~n2 = 1.
Les champs sont orthogonaux et égaux en norme. Les champs sont orthogonaux à
la direction de propagation selon l’axe (Oz). On a donc la description d’une onde
électromagnétique.

10.2. Mouvement quand les champs sont parallèles

On se place dans la configuration telle que ~E = (0, 0, E) et ~B = (0, 0, B).

a) On va en cours que l’équation d’une particule chargée soumise à un champs élec-
tromagnétique est

dPµ

dτ
= qFµνUν (26)

donc puisque P = mU on a

dUµ

dτ
=

q

m
FµνUν . (27)

b) Les équations du mouvement deviennent

dU0

dτ
=

q

m
F 0νUν =

qE

mc
U3 (28)

dU1

dτ
=

qB

m
U2 (29)

dU2

dτ
= −qB

m
U1 (30)

dU3

dτ
=

qE

mc
U0 . (31)
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On a donc le système d’équations du second ordre

d2U0

dτ2
=

(
qE

mc

)2

U0 (32)

d2U3

dτ2
=

(
qE

mc

)2

U3 , (33)

dont la solution est donnée par

U0 = u3
− cosh

(
qE

mc
τ

)
+ u3

+ sinh

(
qE

mc
τ

)
(34)

U3 = u3
+ cosh

(
qE

mc
τ

)
+ u3

− sinh

(
qE

mc
τ

)
, (35)

où l’on a utilisé les équations (28) et (31) pour relier les coefficients. Pour les autres
coordonnées nous avons

d2U1

dτ2
= −

(
qB

m

)2

U1 (36)

d2U2

dτ2
= −

(
qB

m

)2

U2 . (37)

dont la solution est donnée par

U1 = u1
+ cos

(
qB

m
τ

)
+ u1

− sin

(
qE

mc
τ

)
(38)

U2 = u1
− cos

(
qB

m
τ

)
+ u1

+ sin

(
qB

m
τ

)
. (39)

où l’on a utilisé les équations (29) et (30) pour relier les coefficients. Si on suppose
les conditions initiales ~U = (γ v, 0, 0) pour τ = 0 on trouve que

U0 = u3
− cosh

(
qE

mc
τ

)
(40)

U1 = γ v cos

(
qB

m
τ

)
(41)

U2 = γ v sin

(
qB

m
τ

)
(42)

U3 = u3
− sinh

(
qE

mc
τ

)
, (43)
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Maintenant on utilise que U2 = c2 pour trouver que c2 = (u3
−)2 − (γ v)2. Donc

u3
− = c

√
1 + γ2

v2

c2
= c γ . (44)

où l’on a utilisé que γ−2 = 1− (v/c)2.

c) Puisque dt/dτ = U0/c = γ cosh(qEτ/(mc)) alors

t = γ sinh

(
qE

mc
τ

)
mc

qE
(45)

qui permet d’exprimer τ en fonction de t. Puisque dz/dτ = U3 =
cγ sinh(qEτ/(mc)) on trouve que

z = z0 + γ
mc2

qE
cosh

(
qE

mc
τ

)
(46)

Et pour les autres coordonnées avec u = γ v

x = x0 + γ
vm

qB
sin

(
qB

m
τ

)
(47)

y = y0 − γ vm
qB

cos

(
qB

m
τ

)
. (48)

On trouve un mouvement hélicoïdal.

d) Quand E = 0, alors t = γ τ (qu’on peut déduire de l’équation (45)), donc on
trouve un mouvement circulaire avec un pulsation cyclotron

ω =
qB

γ m
. (49)

e) Pour B = 0 on a juste un mouvement selon z. Si on suppose qu’à t = 0 on a z = 0
alors

z = γ
mc

qE

(
cosh

(
qE

mc
τ

)
− 1

)
. (50)

Puisque cosh(x)2 − sinh(x)2 = 1 alors

z = γ
mc2

qE



√

1 +

(
qEt

γ mc

)2

− 1


 . (51)

Dans la limite non relativiste c� 1 et γ ' 1 donc

z ' mc2

qE

1

2

(
qEt

mc

)2

=
1

2

qEt2

m
. (52)
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11. Corrigé PC 7 : Mécanique
Hamiltonienne

Relativité restreinte (PHY 431)
Pierre Vanhove

PC du 6 janvier 2015

11.1. L’oscillateur harmonique

On considère un oscillateur harmonique à une dimension de potentiel

V (q) =
1

2
mω2q2 (1)

a) La lagrangien est donné par

L =
1

2
mq̇2 − 1

2
mω2q2 (2)

Les équations d’Euler-Lagrange

d

dt

∂L
∂q̇

=
∂L
∂q

(3)

donnent
mq̈ = −mω2q (4)

b) L’Hamiltonien est donné par

H =
1

2m
p2 +

1

2
mω2q2 (5)

Les équations d’Hamilton

q̇ =
∂H
∂p

=
p

m

ṗ = −∂H
∂q

= −mω2q (6)

impliquent
q̈ = −ω2q (7)
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11. Corrigé PC 7 : Mécanique Hamiltonienne

c) Le moment conjugué p s’écrit

p =
∂L
∂q̇

= eα t q̇ (8)

donc l’Hamiltonien s’écrit

H =
1

2
p2e−αt +

1

2
ω2q2eαt (9)

Les équations d’Hamilton donnent

q̇ = p e−αt

ṗ = −ω2 q eαt (10)

ce qui implique
q̈ + αq̇ + ω2q = 0 (11)

11.2. Mouvement dans un repère tournant

On part de la définition du moment conjugé

~p :=
∂L
∂~v

= m~v +m~Ω× ~v (12)

donc ~v = ~p
m − ~Ω× ~r et le Lagrangien se réécrit L = ~p2/(2m). Ainsi l’hamiltonien est

donné par

H := ~p · ~v − L (13)

= ~p ·
(
~p

m
− ~Ω× ~r

)
− L (14)

=
~p2

2m
− ~p · (~Ω× ~r) . (15)

En utilisant la propriété du produit vectoriel ~a · (~b×~c) = ~b · (~c×~a) que l’on démontre
aisément en exprimant cette quantité

~a · (~b× ~c) = εijka
ibjck (16)

en utilisant le pseudo-tenseur totalement antisymmetrique εijk introduit en PC5.
Ainsi l’hamiltonien du système est donné par

H =
~p2

2m
− ~Ω · ~r × ~p︸ ︷︷ ︸

=~l

. (17)
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11.3. Le cerceau à vitesse angulaire constante

Les équations de Hamilton donnent

q̇ = pe−αt et ṗ = −ω2qeαt.

On en déduit l’équation du mouvement :

q̈ + ω2q + αq̇ = 0.

3.5.2 Le cerceau à vitesse angulaire constante

Une bille glisse sans frottement le long d’un cerceau de rayon R animé d’un
mouvement de rotation autour de son axe à vitesse angulaire ω constante. La
position de la bille sur le cerceau est déterminée par un seul degré de liberté,
l’angle θ avec la verticale. La position du cerceau est elle décrite par l’angle φ
(voir la figure 8).

φ

θ

Fig. 8 – La bille sur le cerceau en rotation.

1) Écrire le Lagrangien de ce système et en déduire l’équation du mouvement.
2) Écrire le Hamiltonien du système et en déduire à nouveau l’équation du
mouvement.
3) Montrer que la bille est soumise à un potentiel effectif V (θ) dont on étudiera
le comportement en fonction de θ. On posera ω0 =

√
g/R.

4) Quel est le comportement de la bille pour des vitesses de rotation lente
(ω < ω0) ?
5) Même question dans le cas de la rotation rapide (ω > ω0).

Réponse :

1) En coordonnées sphériques, la position de la bille est donc déterminée par
R, θ(t) et φ(t). Sa vitesse est donc Rθ̇%eθ + R sin θφ̇%eφ, avec φ̇ = ω. Son énergie

31

Figure 1. – Perle sur le cerceau en rotation

a) La perle sur le cerceau a pour coordonnées

x = R cosφ sin θ (18)
y = R sinφ sin θ (19)
z = R cos θ . (20)

Si on désigne la vitesse de la perle par ~v alors

~v2 = R2 (θ̇2 + ω2 sin2 θ) , (21)

où l’on a utilisé que φ̇ = ω est la vitesse de rotation du cerceau. La perle est
soumise au potentiel gravitationnel donc

V = mg cos θ , (22)

et le lagrangien est donné par

L =
mR2

2
(θ̇2 + ω2 sin2 θ)−mgR cos θ . (23)

L’équation d’Euler-Lagrange pour la variable θ donne

d

dt

∂L
∂θ̇

=
∂L
∂θ

(24)

d

dt
(mR2θ̇) =

mR2

2
ω2 sin(2θ) +mgR sin θ (25)

donc

θ̈ =
ω2

2
sin(2θ) +

g

R
sin θ . (26)
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b) Puisque

pθ =
∂L
∂θ̇

= mR2θ̇ (27)

L’hamiltonien est donnée par

H = pθθ̇ − L =
p2
θ

2mR2
− mR2ω2

2
sin2 θ +mgR cos θ . (28)

Les équations d’Hamilton-Jacobi donnent que

θ̇ =
∂H
∂pθ

=
pθ
mR2

(29)

ṗθ = −∂H
∂θ

=
mR2ω

2
sin(2θ) +mgR sin θ . (30)

en combinant ces deux équations on retrouve l’équation du mouvement donnée
dans (26).

c) La perle est soumise au potentiel effectif résultant de la force centrifuge et de la
force de réaction du cerceau sur la perle

Veff (θ) = −mR
2ω2

2
sin2 θ +mgR cos θ (31)

= −mR2

(
ω2

2
sin2 θ − ω2

0 cos θ

)
. (32)

On constate que Veff (π− θ) = Veff (π+ θ) qui implique une symétrie par rapport
θ = π. On calcule la dérivée du potentiel

dVeff (θ)

dθ
= −mR2 sin θ(ω2 cos θ + ω2

0) (33)

On constate que cette dérivée s’annule pour θ = 0 et θ = π pour toutes les valeurs
de la vitesse de rotation ω.

Autour de θ = 0 le potentiel prends la forme

Veff (θ) = mR2ω0 −
mR2

2
(ω2 + ω2

0) θ2 +O(θ3) . (34)

Le signe moins indique que la position d’équilibre θ = 0 est toujours instable
quelque soit la vitesse de rotation du cerceau.

Autour de θ = π on trouve

Veff (θ) = mR2ω0 −
mR2

2
(ω2 − ω2

0) (θ − π)2 +O((θ − π)3) . (35)

Ainsi la position θ = π est stable pour les rotations lentes |ω| < |ω0| et instable
pour les rotations rapides |ω| > |ω0|.
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Si la vitesse de rotation |ω| > |ω0| on trouve un autre point d’équilibre

cos θ∗ = −ω
2
0

ω2
, pour ω > ω0 . (36)

d) On en déduit que pour les rotations lentes |ω| < |ω0| la perle oscillera autour de
la position d’équilibre θ = π avec une pulsation R

√
ω2

0 − ω2.

e) Pour les rotations rapides |ω| > |ω0| la position θ = π devient instable et la perle
s’écarte de cette position. La solution θ∗ devient une nouvelle position d’équilibre
stable puisque

V (θ∗ + η) = V (θ∗) +
d2V (θ)

dθ2

∣∣∣∣
θ=θ∗

η2 +O(η3) (37)

où nous avons utilisé que dV (θ)
dθ

∣∣∣
θ=θ∗

= 0. La dérivée seconde est donnée par

d2V (θ)

dθ2
= −mR2 (ω2

0 cos θ + ω2 cos(2θ)) (38)

= −mR2 (ω2
0 cos θ + ω2(2 cos2 θ − 1)) , (39)

où l’on a utilisé que cos(2θ) = 2 cos2 θ− 1. Ainsi pour la position d’équilibre θ∗ on
a que

d2V (θ)

dθ2

∣∣∣∣
θ=θ∗

= mR2ω2

(
1− ω4

0

ω4

)
. (40)

est positive ce qui correspond à la nouvelle position d’équilibre stable.
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12. Corrigé PC8 : Relativité et
gravitation

Relativité restreinte (PHY 431)
Pierre Vanhove

PC du 13 janvier 2015

12.1. Géodésiques en relativité générale

S =

∫ sB

sA

gµν(xσ)ẋµẋν ds, (1)

où ẋµ est par définition dxµ/ds et où s est un paramètre le long de la courbe joignant
A à B.

a) Les équation d’Euler-Lagrange pour la densité de lagrangien L = gµν(xσ)ẋµẋν

pour les cordonnées xµ s’écrivent

d

ds

∂L
∂ẋµ

=
∂L
∂xµ

, (2)

soit
d

ds
(2gµν ẋ

ν) = ∂µgρσ(x)ẋρẋσ . (3)

Ces équations peuvent se réécrire

ẍµ + gµν
(
∂ρgσν(x)− 1

2
∂νgρσ(x)

)
ẋρẋσ = 0 . (4)

b) En utilisant la définition du symbole de Christoffel

Γµλρ :=
1

2
gµσ (∂λgσρ + ∂ρgσλ − ∂σgλρ) , (5)

et la symétrie du tenseur métrique gµν(x) = gνµ(x) on trouve que l’équation du
mouvement d’une particule libre dans un espace courbe est donnée par

ẍµ + Γµλρ ẋ
ρẋλ = 0 . (6)
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c) En détaillant les composantes l’équation du mouvement s’écrit

d2xµ

dτ2
+ Γµ00

(
dx0

dτ

)2

+ Γµ0i

(
dx0

dτ

)
dxi

dτ
+ Γµij

dxi

dτ

dxj

dτ
= 0 . (7)

Pour un mouvement lent (non relativiste) de la particule les termes en vitesse
dxi/dτ sont négligeables devant les dérivées dt/dτ et l’équation s’approxime en

d2xµ

dτ2
+ Γµ00

(
dx0

dτ

)2

' 0 . (8)

Pour un champs stationnaire alors ∂0gµν(x) = 0 donc Γ0
00 = 0

Γi00 ' −
1

2
giν

∂g00

∂xν
. (9)

Dans la limite des champs faibles gµν ∼ ηµν + hµν , cette équation s’approxime en

Γi00 ' −
1

2
ηiν

∂h00

∂xν
=

1

2
∇ih00 . (10)

Les équations du mouvement donnent dans ces approximations

d2x0

dτ2
= 0 (11)

d2xi

dτ2
= −1

2

(
dx0

dτ

)2

∇ih00 . (12)

De la première équation on déduit que x0 = ct = α τ + β donc l’équation du
mouvement pour les coordonnées spatiales xi avec i = 1, 2, 3 s’écrit

d2~x

dt2
= −~∇

(
c2

2
h00

)
. (13)

On reconnait l’expression du mouvement d’une particule soumise à la force gravi-
tationelle ~F = −~∇U dérivant du potentiel

U(~x) =
c2

2
h00(~x) + Cste . (14)

On rappelle que pour une particule de mass m soumise au un potentiel gravita-
tionnel, l’équation du mouvement est m~̈x = −m~∇U(~x).

d) On considère la métrique de Schwarzschild donnée par

ds2 =

(
1− 2GNM

rc2

)
c2dt2 −

(
1− 2GNM

rc2

)−1

dr2 − r2
(
dθ2 + sin2 θdϕ2

)
(15)
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où GN est la constant de Newton.

e) L’approximation à grandes distances de cette métrique donne

h00 = −2GNM

c2r
. (16)

donc le potentiel gravitationnel est

U(~x) = −GNM
r

(17)

où l’on a fixé la contante d’intégration comme nulle. Pour un corps sphérique de
masse totaleM le potentiel Newtonien à la distance r de son centre est bien donné
par l’expression trouvée ci-dessus.

12.2. Déviation des rayons lumineux

2.2. PRINCIPE D’ÉQUIVALENCE 11

(b)

A B A
B

(a)

Fig. 2.1 – Trajectoire d’un photon dans un ascenseur. (a) Référentiel en chute libre (b) Référentiel de la
Terre.

⇠
p

b2 + v2t2

b '

�✓

O

Fig. 2.2 – Déviation d’un rayon lumineux par une masse M placée en O.

�py =

Z +1

�1
Fy dt Fy = � GmM

b2 + v2t2
cos' = � GmMb

(b2 + v2t2)3/2

où b est le paramètre d’impact. On obtient donc

�py = �GmMb

Z +1

�1

dt

(b2 + v2t2)3/2
= �2GmM

bv
(2.7)

soit pour l’angle de déviation2

�✓ =
�py

mv
=

2GM

bv2
(2.8)

Extrapolant hardiment au cas d’un photon pour lequel v = c, on en déduit �✓ = 2GM/(bc2), ce qui
correspond pour une incidence rasante sur le Soleil (b = RS = rayon du Soleil) à une déviation de 0.87”
(seconde d’arc), résultat obtenu initialement par Einstein en 1907. Le résultat de la relativité générale
(1915) est le double : 1.75”. En fait, dans ce calcul, nous sommes allés au-delà du principe d’équivalence,
valable uniquement pour des champs de gravitation constants, et il n’est pas surprenant que notre résultat
soit quantitativement incorrect, même si le phénomène est prédit correctement de façon qualitative.

2Il est évidemment facile de donner une formule exacte étant donné que les orbites sont des hyperboles

cot
�✓

2
=

bv2

GM

résultat qui cöıncide avec (2.8) pour �✓ ⌧ 1.

Figure 1. – Déviation de la lumière au voisinage du soleil

On considère une petite masse m 6= 0 arrivant de l’infini et rasant le soleil de masse
M�. La trajectoire de la particule s’incurve d’un angle ∆θ faible (voir la figure). On
supposera que y ∼ b est constant.

a) Par définition

δθ =
δy

δx
=
vy(x+ ε, y)− vy(x, y)

ε
δt ' ∂xvy δt , (18)

donc
∆θ =

∫ ∞

−∞
∂xvy dt . (19)

b) Pour une particule de masse m soumise au champs de gravitation donc

dpy
dt

= −GNMm

r2
cosϕ , (20)
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avec cosϕ = b/r donc
dvy
dt

= −GNMb

r3
. (21)

Comme r2 = b2 + (vt)2 on en déduit que

dvy
dx

=
dvy
dt

1

vx
' −GNMb

vr3
, (22)

où l’on a utilisé l’approximation v ' vx car la déviation selon (Oy) est faible. Donc

∆θ =

∫ +∞

−∞

(
− GNM

v(b2 + (vt)2)
3
2

)
dt = −GNM

bv2

∫ +∞

−∞

dx

(1 + x2)
3
2

. (23)

en utilisant que
∫ +∞
−∞

dx

(1+x2)
3
2

= 2 on trouve dans le cadre de la mécanique New-

tonienne une déviation de

∆θNewton = −2GNM

bv2
. (24)

c) Comme cette formula ne dépend pas de la masse on peut l’appliquer aux rayons
lumineux de vitesse v = c rasant le soleil b = R�. On trouve alors

∆θNewton = −4.25 10−6 radian = .875 secondes . (25)

On rappelle qu’un degré à pour valeur numérique π/180 radians.

d) L’équation du mouvement déduite dans l’exercice précédant donne

duy

dτ
+ Γy00 (u0)2 + Γyxx (ux)2 + 2Γyx0u

0ux + Γyyy(u
y)2 = 0 . (26)

Où les composantes du quadrivecteur vitesse sont dénotées U = (uµ). Comme la
vitesse selon y est faible uy est négligeable donc

duy

dτ
' Γy00 (u0)2 − Γyxx (ux)2 − 2Γyx0u

0ux . (27)

Comme uy = γ vy avec γ approximativement constant on en déduit que

duy

dτ
= γ

dvy

dτ
= γux

dvy

dx
, (28)

ce qui dans l’équation du mouvement donne

1

c

dvy

dx
' −Γy00

(u0)2

cγux
− Γyxx

ux

cγ
− 2Γyx0

u0

cγ
. (29)
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Puisque u0 = γ c et ux = γ v on a

1

c

dvy

dx
' −Γy00

( c
v

+
v

c

)
− 2Γyx0 . (30)

Maintenant on utilise que la métrique de Schwarschild Γy00 ' Γyxx pour trouver que

1

c

dvy

dx
= −Γy00

( c
v

+
v

c

)
− 2Γyx0 . (31)

e) Pour la métrique de Schwarschild de l’exercice précédant on a Γy00 ' GNMb/(r3c2)
et Γyx0 ' 0 ce qui donne que pour la variation de la vitesse

1

c

dvy

dx
' −GNMb

r3c2

( c
v

+
v

c

)
. (32)

En appliquant cette équation au cas de la lumière avec v = c et avec r2 = b2 +(ct)2

on en déduit que
dvy

dx
' − 2GNMb

(b2 + (ct)2)
3
2 c
, (33)

ce qui donne comme angle de déviation pour la lumière

∆θrelativit =

∫ +∞

−∞

(
− 2GNMb

(b2 + (ct)2)
3
2 c

)
dt = −4GNM

bc2
(34)

Soit pour la déviation des rayons lumineux par le Soleil

∆θrelativit = 8.5 10−6 radians = 1.75 secondes . (35)

f) On constate que la différence entre le résultat calculé en physique Newtonienne
et en relativité est un facteur. Ce facteur deux vient de l’effet de courbure de
l’espace-temps qui introduit un terme supplémentaire en Γyxxv/c dans l’équation
du mouvement. Le calcul Newtonien revient à ne considérer que l’effet du potentiel
gravitationnel sur le temps et travailler avec la métrique

ds2 =

(
1− 2GNM

rc2

)
c2dt2 − d~x2 , (36)

alors que le calcul correct en relativité général tient compte aussi de la courbure
de la partie spatiale comme donné par la métrique de Schwarzschild (15).
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13. Correction du premier devoir à la
maison

Relativité restreinte (PHY 431)
Pierre Vanhove

Devoir à la maison
Avis au lecteur :
Dans ce texte les questions sont italiques, les solutions sont en caractères droits.

13.1. Équation d’onde

On considère l’espace à quatre dimensions de coordonnées (ct, x, y, z). Soit
(ct′, x′, y′, z′) un autre système de coordonnées reliée au premier système par la trans-
formation suivante 



ct
x
y
z


 =




a b 0 0
b a 0 0
0 0 1 0
0 0 0 1







ct′

x′

y′

z′


 . (1)

On considère l’opérateur d’Alembertien définit par

2 :=
1

c2

∂2

∂t2
− ∂2

∂x2
− ∂2

∂y2
− ∂2

∂z2
. (2)

a) Déterminer la loi de transformation du d’Alembertien sous la transformation (1).

La d’Alembertien est donnée par

2 = ηµν∂µ∂ν (3)

si on dénote par Λ la matrice dans la transformation (1) on obtient

2′ = Λµ
′
µΛν

′
ν η

µν ∂µ′∂ν′ . (4)

On vérifie que pour des valeurs générales de a et b la transformation (1) ne préserve
pas la métrique de Lorentz

Λµ
′
µΛν

′
ν η

µν 6= ηµ
′ν′ (5)
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ce qui est visible en calculant le déterminant det Λ = a2 − b2 alors que pour une
transformation de Lorentz le déterminant vaut un.

Par un calcul direct en coordonnées la transformation (1) implique

∂

∂(ct′)
= a

∂

∂(ct)
+ b

∂

∂x
, (6)

∂

∂x′
= b

∂

∂(ct)
+ a

∂

∂x
, (7)

∂

∂y′
=

∂

∂y
, (8)

∂

∂z′
=

∂

∂z
, (9)

donc

∂2

∂(ct′)2
= a2 ∂2

∂(ct)2
+ b2

∂2

∂x2
+ 2ab

∂2

∂(ct)∂x
, (10)

∂2

∂x′2
= b2

∂2

∂(ct)2
+ a2 ∂

2

∂x2
+ 2ab

∂2

∂(ct)∂x
, (11)

∂2

∂y′2
=

∂2

∂y2
, (12)

∂2

∂z′2
=

∂2

∂z2
, (13)

on trouve donc

2′ = (a2 − b2)

(
∂2

∂(ct)2
− ∂2

∂x2

)
− ∂2

∂y2
− ∂2

∂z2
. (14)

b) Considérer le cas de deux observateurs avec une vitesse relative v selon l’axe Ox
faible devant la vitesse de la lumière. Montrer qu’au premier ordre en v/c la trans-
formation de référentielle entre les observateurs correspond à (a, b) = (1, v/c). Cal-
culer la transformation du d’Alembertien sous cette transformation. Que concluez-
vous ?

La limite non relativiste des transformations de Lorentz à l’ordre quadratique en
la vitesse v/c

ct = ct′ +
v

c
x+ o(v/c)2 (15)

x = x′ +
v

c
ct+ o(v/c)2 (16)
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correspond à a = 1 et b = v/c. Dans l’équation (14) on trouve

2′ =
(

1− v2

c2

) (
∂2

∂(ct)2
− ∂2

∂x2

)
− ∂2

∂y2
− ∂2

∂z2
+O(v/c)2 (17)

indiquant que l’opérateur d’Alembertien n’est pas invariant sous les transforma-
tions Galiléennes.

Si on conserve v � cmais non nulle, le d’Alembertien n’est invariant qu’au premier
ordre en v/c : 2′ ' 2 +O(v2/c2).

Si on prend la limite c → ∞ et que l’on suppose que les variations temporelle
et spatiales sont faibles alors 2 ' −∆ + O(1/c2) et on retrouve bien sûr que le
Laplacien est invariant.

c) On considère maintenant que nos deux observateurs sont relativistes, toujours en
mouvement relatif à vitesse v le long de l’axe Ox. Donner la loi de transformation
du d’Alembertien. Que concluez-vous ?

Pour les transformations relativistes on a a = γ et b = γ β avec γ = (1− β2)−
1
2 et

β = v/c, donc a2 − b2 = 1 et 2 = 2′.

Le d’Alembertien est donc invariant sous les transformations de Lorentz.

d) On considère l’équation de Schrödinger

− ~2

2m
∆Ψ(t, x, y, z) + U(x, y, z) Ψ(t, x, y, z) = i~

∂Ψ(t, x, y, z)

∂t
(18)

avec la laplacien ∆ = (∂/∂x)2+(∂/∂y)2+(∂/∂z)2. Étudier l’invariance cette équa-
tion sous une transformation galiléenne. Montrer qu’il existe une fonction f(t′, x′)
telle que Ψ(t, x) = f(t′, x′) Ψ̃(t′, x′) avec Ψ̃(t′, x′) une fonction d’onde satisfaisant
l’équation de Schrödinger en les variables (t′, x′).

Sous une transformation galiléenne

t′ = t (19)
x′ = x+ v t (20)

l’équation de Schrödinger se transforme

∂Ψ(x, t)

∂t
=

∂(f(t′, x′)Ψ̃(t′, x′))
∂t′

+ v
∂(f(t′, x′)Ψ̃(t′, x′))

∂x′
(21)

∂Ψ(x, t)

∂x
=

∂(f(t′, x′)Ψ̃(t′, x′))
∂x′

(22)
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On en déduit que

f(t′, x′)

(
− ~2

2m
∆′Ψ̃(t′, x′) + U(t′, x′)Ψ̃(t′, x′)− i~∂Ψ̃(t′, x′)

∂t′

)
=

− Ψ̃(t′, x′)
(
− ~2

2m

∂2f(t′, x′)

∂x′2
− i~∂f(t′, x′)

∂t′

)

+

(
~2

m

∂f(t′, x′)
∂x′

− i~vf(t′, x′)
)
∂Ψ̃(t′, x′)

∂x′
(23)

Si on veut que Ψ̃ satisfasse l’équation de Schrödinger il faut que

Ψ̃(t′, x′)
(
− ~2

2m

∂2f(t′, x′)

∂x′2
− i~∂f(t′, x′)

∂t′

)

=

(
~2

m

∂f(t′, x′)
∂x′

− i~vf(t′, x′)
)
∂Ψ̃(t′, x′)

∂x′
. (24)

Puisque Ψ̃ et ∂x′Ψ̃ sont arbitraire ceci implique

− ~2

2m

∂2f(t′, x′)

∂x′2
− i~∂f(t′, x′)

∂t′
= 0 (25)

~2

m

∂f(t′, x′)
∂x′

− i~vf(t′, x′) = 0 . (26)

Ces équations impliques

f(t, x) = f0 e
imvx~ −i

mv2

2~ t (27)

où f0 est une phase constant d’intégration. Afin que |Ψ(t, x)|2 = |Ψ̃(t′, x′)|2 cette
constante doit être une phase.

On reconnait dans la phase le produit de la quantité de mouvement et de la
position ~p ·x/~. Le second terme de la phase est l’énergie cinétique non-relativiste
T = 1

2mv
2 fois le temps t.

e) Que ce passe-t-il pour l’équation d’onde 2φ(t, x, y, z) = 0 dans le cas galiléen et re-
lativiste. Peut-on trouver une fonction f(t′, x′) telle que φ(t, x) = f(t′, x′)φ′(t′, x′)
et que l’équation d’onde soit invariante sous les transformations galiléennes. Qu’en
déduire sur la nature de l’équation d’onde ?

Dans la cas Galiléen on a avec la transformation (19)

φ(t′, x′, y′, z′) = φ(t, x− vt, y, z) = φ(t, x, y, z) (28)
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donc

∂φ

∂ct
=

∂φ

∂ct′
− v

c

∂φ

∂x′
(29)

∂φ

∂x
=

∂φ

∂x′
(30)

donc sous une transformation Galiléene l’équation devient

2φ(t, ~x) =

(
∂2

∂ct′2
− 2v

∂2

∂ct′∂x′
+ (c2 − v2)

∂2

∂x′2
− ∂2

∂y′2
− ∂2

∂z′2

)
φ(t′, ~x′) (31)

Dans la cas relativiste

∂φ(t, ~x)

∂ct
= γ

∂φ(t′, ~x′)
∂ct′

− γβ ∂φ(t′, ~x′)
∂x′

(32)

∂φ(t, ~x)

∂x
= γ

∂φ(t′, ~x′)
∂x′

− βγ ∂φ(t′, ~x′)
∂(ct′)

(33)

donc
2φ(t, ~x) = (γ2 − γ2β2)2′φ(t′, ~x′) = 2′φ(t′, ~x′) (34)

Une solution de cette équation est l’onde plane

φ(t, ~x) = ei(
~k·~x−ωt) (35)

avec la condition, conséquence de l’équation 2φ(t, ~x) = 0

ω2

c2
− (~k)2 = 0 (36)

qui est la relation de dispersion pour une onde électromagnétique relié sa fréquence
E = ~ω = hν à sa longueur d’onde ‖~k‖ = 2π

λ . On retrouve la relation de dispersion
νλ = c.

On peut écrire la solution (35) avec les quadri-vecteur énergie-impulsion P = ~K =
(ω/c,~k) et position X = (x0 = ct, ~x) comme

φ(t, ~x) = φ0 e
i~k·X (37)

et la relation de dispersion (36) est la condition de masse nulle pour le quadri-vecteur
K

K ·K = 0 . (38)

Si on compare avec la fonction f(t, ~x) trouvé dans (27) on constate que celle-ci
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prend la forme f(t, ~x) = f0 e
iQ·X où cette fois

Q =

(
m(~v)2

2c~
m~v
~

)
(39)

qui fait intervenir énergie cinétique non-relativiste m(~v)2

2 et la quantique de mouve-
ment non-relativite m~v. On peut voir cette fonction comme celle d’une onde plane
non-relativiste, qui n’est bien sur pas invariante sous les transformations de Lorentz.

13.2. Paradoxe d’Ehrenfest

En 1909 Paul Ehrenfest a énoncé un paradoxe semblant montrer un incohérence
logique à la relativité restreinte. 1

On considère un disque de rayon ρ en rotation avec une vitesse angulaire constante
ω. On dénote par R le repère inertiel du laboratoire et R′ le repère en rotation attaché
au disque.

a) Quelle est la valeur du rayon du disque dans les repères R et R′ ?
Le mouvement du repère R′ est perpendiculaire au rayon, donc il n’y a pas de
contraction de Lorentz pour la rayon pour les deux observateur la rayon du disque
est le même ρR = ρR′ = ρ.

b) Quelle est la circonférence L dans le repère du laboratoire R et L′ dans le repère
du disque en rotation ?

Dans le repère attaché au disque en rotation LR′ = 2πρR′ = 2πρ, pour un obser-
vateur dans le référentiel fixe du laboratoire le périmètre est

LR =

∫

bord
d`R (40)

l’élément de longueur infinitésimal contracté selon la direction du mouvement ins-
tantanée

d`R =
d`R′
γ

(41)

avec
γ =

1√
1− β2

, β =
ωρ

c
. (42)

car la vitesse d’un point sur la bord est v = ωρ. On trouve donc

LR =
LR′
γ

. (43)

1. P. Ehrenfest, (1909). Gleichförmige Rotation starrer Körper und Relati-
vitätstheorie. Physikalische Zeitschrift 10 : 918. Pour une traduction en anglais
http://en.wikisource.org/wiki/Uniform_Rotation_of_Rigid_Bodies_and_the_Theory_of_Relativity
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Puisque LR′ = 2πρ on trouve que

LR′ = 2π
ρ

γ
. (44)

c) Comparer les rapports L/ρ et L′/ρ′ ? Qu’en concluez-vous ?

On a
LR
ρR

= 2π ×
√

1− ω2ρ2

c2
< 2π =

LR′
ρR′

. (45)

La résolution du paradoxe est que l’observateur sur le bord du disque n’est pas un
observateur inertiel car il est soumis à la force centrifuge. Les sections de simultanéité
t =constante ne sont pas de géométrie euclidienne de métrique ds2 = −dx2 − dy2 −
dz2 = −(dr2 + r2dθ2) − dy2 − dz2 mais des courbes de métrique (voir L. Landau et
E. Lifischtz, Théorie des champs, Tome 2, §89 (MIR))

ds2|t=cste = −(dr2 +
r2

1− r2ω2

c2

dθ2)− dz2 . (46)

Pour ceux que ce paradoxe intéresse voici un article récent où une résolution phy-
sique est discutée
R. Alexander “Ehrenfest’s paradox for tokamak plasma”, Journal of Modern Physics,

Vol.3 No.10, 2012, PP.1639-1646 http://arxiv.org/abs/1202.2953.

13.3. Effet Sagnac

L’effet Sagnac est un autre effet paradoxal de la relativité restreinte découvert par
Georges Sagnac en 1913. Cet effet permet de détecter en optique un mouvement de
rotation par rapport à l’espace inertiel.
On considère à nouveau un disque de rayon ρ en rotation avec une vitesse angulaire

constante ω. On dénote par R le repère inertiel du laboratoire et R′ le repère en
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rotation attaché au disque.
Sur le bord du disque est placé un émetteur/récepteur E. Ce dispositif émet un

signal S1 qui se propage avec une vitesse ω1 dans le sens de rotation du disque, et
un signal S2 qui se propage avec une vitesse ω2 dans le sens opposé à la rotation du
disque. Les deux signaux évoluent le long du bord extérieur du disque.

a) Déterminez les positions angulaires θ1 et θ2 de réception des signaux S1 et S2 par
le détecteur.

On utilise le système de coordonnées xµ = (ct, r, θ, z). L’invariant relativiste
(cdτ)2 = (cdt)2−dx2−dy2−dz2 = (cdt)2−dr2−r2dθ2−dz2. Comme le problème
est dans le plan z = cste cette coordonnée n’est plus écrite dans la suite.

La ligne d’univers du détecteur est

E = (ct, R, ωt) =

(
cθ

ω
,R, θ

)
(47)

Les signaux ont comme lignes d’univers

S1 =

(
cθ

ω1
, R, θ

)
(48)

S2 =

(
cθ

ω2
, R, θ

)
(49)

Le signal S1 est détecté par E lorsque

cθ1

ω
=

c

ω1
(θ1 + 2π)⇐⇒ θ1 =

2πω

ω1 − ω
. (50)

Le signal S2 est détecté par E lorsque

cθ2

ω
=

c

ω1
(θ2 − 2π)⇐⇒ θ2 = − 2πω

ω2 − ω
. (51)

Le signe − est dû au fait que le signal S2 tourne dans l’autre sens.

Les vitesses angulaires du détecteur, du signal S1 et du signal S2 sont dénotés B,
B1 et B2, telles que

B =
ωR

c
(52)

B1 =
ω1R

c
(53)

B2 =
ω2R

c
, (54)
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donc les angles dans (51) sont donnés par

θ1 =
2πB

B1 −B
=

2πω

ω1 − ω
(55)

θ2 = − 2πB

B2 −B
= − 2πω

ω2 − ω
. (56)

b) Calculer les temps propre τ1 et τ2 de propagation de chacun des signaux entre
l’émission et la réception. Calculer la différence des δτ = τ1 − τ2.

Le temps propre de E dans le repère en rotation avec le disque

τ =
1

c

∫ θ

0
cdτ =

1

c

∫ θ

0

√
c2dt2 −R2dϑ2 =

√
1−B2

ω

∫ θ

0
dϑ =

√
1−B2

ω
θ (57)

Posons
γ =

1√
1−B2

=
1√

1− (ωR)2

c2

(58)

le facteur relativiste du référentiel en rotation. Pour le signal S1

τ1 =
2π

γ

B

B1 −B
=

2π

γ

ω

ω1 − ω
(59)

pour le signal S2

τ2 = −2π

γ

B

B2 −B
= −2π

γ

ω

ω2 − ω
(60)

donc

∆τ := τ1 − τ2 =
2πB

ωγ

ω1 − ω2 − 2ω

(ω1 − ω)(ω2 − ω)
(61)

c) Si l’émetteur/récepteur émet de la lumière de manière isotrope ω′ = ω1 = −ω2,
donner l’expression de différence de temps δτ .

Si E émet un signal isotrope avec une vitesse B′ (dans le repère inertiel local à
E), la loi de composition des vitesses donne

B1 =
B′1 +B

1 +B′1B
(62)

B2 =
B′2 +B

1 +B′2B
(63)

donc
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13. Correction du premier devoir à la maison

∆τ =
4πB2γ

ω
+

2πBγ

ω

(
1

B′1
+

1

B′2

)
(64)

avec B′1 +B′2 = 0 on trouve l’effet Sagnac relativiste

∆τ =
4πR2ω

c2

(
1− ω2R2

c2

)− 1
2

(65)

d) Considérer la limite non relativiste. Qu’en concluez vous ?

Si Rω � c alors le facteur relativiste γ =
(

1− ω2R2

c2

)− 1
2 ' 1 et l’expression précé-

dente devient

c2∆τ ' 4π2R2ω = 4Aireω (66)

l’effet est proportionnel à l’aire du disque. Expérimentalement on constate cette dé-
pendance quelque soit la forme du bord entourant la surface. On peut donc ainsi
mesurer facilement la vitesse de rotation ω.
Des gyroscopes à laser exploitant l’effet Sagnac sont couramment utilisés pour me-

surer avec précision la rotation d’un dispositif relativement à un repère inertiel.
Pour une discussion de la physique de l’effet Sagnac vous pouvez consulter

• J. Anandan, “The Sagnac Effect In Relativistic And Nonrelativistic Physics,”
Phys. Rev. D 24 (1981) 338.

• G. Rizzi and M. L. Ruggiero, “The Relativistic Sagnac effect : Two derivations,”
http://arxiv.org/abs/gr-qc/0305084.
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14. Corrigé du second devoir à la
maison

Relativité restreinte (PHY 431)
Pierre Vanhove

Avis au lecteur :
Dans ce texte les questions sont italiques, les solutions sont en caractères droits.

14.1. Équation de Maxwell et sources

Le rang de covariance d’un tenseur est augmenté d’une unité par l’action de l’opé-
rateur ∂ de « composantes » {∂µ, µ = 0, 1, 2, 3} ≡ (∂tc ,

~∇). Le tenseur métrique (ηµν
ou son inverse ηµν) et le tenseur antisymétrique de Levi–Civita (εµνρσ ou εµνρσ avec
ε0123 = 1 = −ε0123) peuvent aussi être utilisés pour engendrer de nouveaux tenseurs
ou scalaires (invariants) à partir de tenseurs préalablement définis.
Si l’on considère le tenseur de Faraday F décrit le champ électromagnétique. Ses

composantes Fµν forment la matrice suivante :

Fµν :=




0 Ex/c Ey/c Ez/c
−Ex/c 0 Bz −By
−Ey/c −Bz 0 Bx
−Ez/c By −Bx 0


 . (1)

alors
Fµ = εµνρσ ∂νFρσ. (2)

a) Montrer l’équivalence

Fµ = 0⇐⇒ ∂µFνρ + ∂νFρµ + ∂ρFµν = 0 (3)

Fµ = εµνρσ∂νFρσ =
1

3
εµνρσ (∂µFνρ + ∂νFρµ + ∂ρFµν) (4)

Comme
1

6
εµνρλF

λ = ∂µFνρ + ∂νFρµ + ∂ρFµν (5)

on en déduit (3).
Remarque nous aurions pu travailler sans expliciter les coordonnées en posant
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14. Corrigé du second devoir à la maison

F1 := Fµ eµ (6)
dF := (∂µFνρ + ∂νFρµ + ∂ρFµν) eµ ∧ eν ∧ eρ (7)

il faut alors montrer que F1 = dF. Nous avons

F1 =
1

3
(∂µFνρ + ∂νFρµ + ∂ρFµν) εµνρσ eµ (8)

il suffit de réaliser que
εµνρσ eµ = 3 eµ ∧ eν ∧ eρ . (9)

On a vu en PC4 que cette équation implique les équations de Maxwell suivantes

∇ · ~B = 0 absence de monopôles magnétiques (10)

∇× ~E +
∂ ~B

∂t
= 0 loi de Faraday (11)

b) Vérifiez les expressions des invariants relativistes du champs électromagnétique

ηµρηνσFµνFρσ = −2

(
~E2

c2
− ~B2

)
, (12)

εµνρσFµνFρσ = −8

c
~E · ~B (13)

Sous une transformation de Lorentz Λ

F ′µν = Fρσ Λµ
ρ Λν

σ , (14)

donc

I1 = ηµρηνσ Λµ
αΛν

βΛρ
γΛσ

δ FαβFγδ (15)
I2 = εµνρσ Λµ

αΛν
βΛρ

γΛσ
δ FαβFγδ (16)

Mais
ηµρηνσ Λµ

αΛρ
γ = ηαγ (17)

car la transformation de Lorentz préserve la métrique (ou de manière équivalente
le produit scalaire entre deux quadri-vecteurs) comme nous l’avons vu en PC3.
Donc

I1 = ηαγηβδFαβFγδ . (18)

Maintenant remarquons que

εµνρσ Λµ
αΛν

βΛρ
γΛσ

δ = (det Λ) εαβγδ . (19)
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14.1. Équation de Maxwell et sources

Pour prouver cette identité, choisissez des valeurs de α, β, γ, δ et utiliser la défini-
tion du déterminant d’une matrice comme une somme alternée sur les permutations
S4 de (1234)

det Λ =
∑

σ S4

|σ|Λ1σ(1)Λ2σ(2)Λ3σ(3)Λ4σ(4) (20)

les valeurs de εµνρσ correspondent à la signature de la permutation (1234) →
(µνρσ). Comme les transformations de Lorentz ont det Λ = 1 puisque nous sommes
dans la composantes SO+↑(1, 3) du groupe des transformations (cf. PC3), et I2

est bien un invariant relativiste.

Montrons maintenant l’équation (16).

I2 = 8 (ε0123F01F23 + ε0213F02F13 + ε0321F03F21) (21)

= 8

(
Ex

c
(Bx)− Ey

c
(−By)−

Ez

c
(−Bz)

)
(22)

= −8
ExBx + EyBy + EzBz

c
= −8

~E · ~B
c

(23)

c) Montrez que l’équation

∂µF
µν = µ0 j

ν , (24)

implique les équations de Maxwell avec sources

~∇ · ~E =
%

ε0
loi de Gauss (25)

~∇× ~B − 1

c2

∂ ~E

∂t
= µ0 ~ loi d′Ampère (26)

où % et ~ sont les densités de charge et de courant (rappel : µ0ε0c
2 = 1).

Tout d’abord spécifions ν = 0. Nous avons la suite d’équivalences suivante

∂µF
µ0 = µ0 j

0 (27)
⇐⇒ ∂iF

i0 = µ0 c% (28)

⇐⇒ ∂i
Ei

c
= µ0 c% (29)

⇐⇒ ~∇ · ~E =
%

ε0
. (30)
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14. Corrigé du second devoir à la maison

pour ν = i avec i = 1, 2, 3 on a la suite d’équivalence suivante

∂µF
µi = µ0j

i (31)
⇐⇒ ∂0F

0i + ∂jF
ji = µ0 j

i (32)

⇐⇒ − ∂

∂(ct)

Ei

c
+ εijk∂jBk = µ0 j

i (33)

⇐⇒ − 1

c2

∂Ei

∂t
+ (~∇× ~B)i = µ0 j

i (34)

d) Montrer que J = {jν , ν = 0, 1, 2, 3} := (c%,~ = %~v ) sont les composantes d’un
quadrivecteur J, dit de densité de courant, si la charge électrique est invariante
sous les transformation de Lorentz.

Comme J = %
γ (c,~v) = %

γ U puisque U est invariant de Lorentz il faut montrer
que %/γ est invariant de Lorentz. On dit que la charge Q est invariante donc la
densité de charge % = dQ/dV est sensible à la contraction des longueurs. Sous une
transformation de Lorentz dV → dV/γ, et le facteur γ est justement présent pour
compenser cet effet sur la densité de charge.

Alternativement, comme nous savons que jµ = µ−1
0 ∂νF

µν est comme la dérivée
d’un quadri-tenseur est un quadri-tenseur, alors jµ sont les composantes d’un
quadri-vecteur.

On peut aussi écrire ces équations sans expliciter les indices en introduisant

d ? F := ∂µF
µν eν (35)

Alors l’équation de Maxwell avec source s’écrit

d ? F = µ0 ?J . (36)

En utilisant le tenseur ε on montre que

6 εµνκλεκλρσ∂µF
ρσ = ∂µF

µν . (37)

Sinon pose

?F := εµνρσ Fρσ e
ρ ⊗ eσ (38)

?J :=
1

4
εµνρσ Jσ e

ρ ⊗ eσ ⊗ eρ (39)

Les équations de Maxwell sans sources et avec sources s’écrivent alors

dF = 0 (40)
d ? F = µ0 ?J . (41)
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e) Montrer que les équations inhomogènes de Maxwell imposent l’équation de conti-
nuité

∂%

∂t
+ ~∇ · ~ = 0. (42)

La divergence de (26) donne

− 1

c2
~∇ · ∂t ~E = µ0

~∇ · ~ (43)

la dérivée temporelle de (25) donne

∂t~∇ · ~E =
1

ε0
∂t% (44)

en combinant ces deux équations on obtient la relation de continuité demandée.

f) Écrire cette équation en utilisant le quadri-vecteur J. Obtenir cette équation direc-
tement à partir de (24).

Cette équation s’écrit simplement

∂ct(cρ) + ∂ij
i = ∂µJ

µ = 0 (45)

En dérivant (24) on obtient

∂µ∂νF
µν = µ0∂νJ

ν (46)

mais comme Fµν est antisymétrique le membre de gauche est nul.

En utilisant les notations introduites dans (39) cette équation s’écrit simplement
comme

(d ? J) = 0 . (47)

Nous avons vu en PC5 que les équations homogènes de Maxwell dans (3), ou de
manière équivalente (10)-(11) sont satisfaites si Fµν résulte d’une forme de potentiel
A = (A0/c, ~A) selon

Fµν = ∂µAν − ∂νAµ . (48)

Nous avons vu que A est défini à la dérivée d’une fonction arbitraire près

A→ A′ +∇χ (49)

Nous avons vu aussi que pour fixer cette liberté de jauge, on impose une contrainte.
Un contrainte invariante de Lorentz est la jauge de Lorenz

∂µA
µ = 0 . (50)

g) Montrer que dans cette jauge les équations de Maxwell inhomogènes deviennent

2A = µ0 J, (51)

85



14. Corrigé du second devoir à la maison

où 2 := ∂µ∂
µ = 1

c2
∂2

∂t2
−4 est l’opérateur d’Alembertien.

On applique (24)

∂µF
µν = ∂µ(∂µAν − ∂νAµ) = ∂µ∂

µAν = 2Aν . (52)

14.2. Le pendule double

On veut analyser la dynamique d’un pendule double placé dans le champ de gravi-
tation terrestre. Ce pendule est constitué de deux masses reliées par des cables rigides
de masses négligeables (voir fig 1.2).

a) Écrire le lagrangian du système. En déduire les équation d’Euler-Lagrange.

Le lagrangien est donné par la somme des lagrangians des masses m1 et m2, c’est-
à-dire L = L1 + L2 avec

L1 =
m1

2
~v2

1 − (m1gy1) (53)

L2 =
m2

2
~v2

2 − (m2gy2) . (54)

(L’axe verticale est orienté vers le haut, d’où le signe dans le potentiel gravita-
tionnel). Comme le mouvement est dans le plan (xOy) et la rigidité des cables se
traduit part les relations (x1 − x2)2 + (y1 − y2)2 = l22 et x2

1 + y2
1 = l21 on utilise les

coordonnées angulaires pour la masse m1

x1 = l1 sin θ1 (55)
y1 = −l1 cos θ1 (56)

et pour la masse m2

x2 = x1 + l2 sin θ2 = l1 sin θ1 + l2 sin θ2 (57)
y2 = y1 − l2 cos θ2 = −l1 cos θ1 − l2 cos θ2 (58)

Le lagrangien ne dépends que des angles θ1 et θ2 donc les équation d’Euler-
Lagrange sont

d

dt

∂L
∂θ̇1

=
∂L
∂θ1

(59)

d

dt

∂L
∂θ̇2

=
∂L
∂θ2

. (60)
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On obtient alors le système suivant

(m1 +m2)l21θ̈1 +m2l1l2 cos(θ1 − θ2)θ̈2 (61)
+ m2l1l2 sin(θ1 − θ2) (θ̇2)2 + (m1 +m2)gl1 sin(θ1) = 0 ,

et

m2l
2
2θ̈2 +m2l1l2 cos(θ1 − θ2)θ̈1 (62)

+ m2l1l2 sin(θ2 − θ1) (θ̇1)2 +m2gl2 sin(θ2) = 0 .

b) Sous l’hypothèse d’un angle initial θ0 suffisamment petit, écrire les équation du
mouvement dans l’approximation des petits déplacements. Pour de petits déplace-
ments cos(x) ' 1 et sin(x) ' x et en ne conservant que les termes du premier
ordre en les angles et leur variations temporelles on trouve le système suivant

(
(m1 +m2)l21 m2l1l2
m2l1l2 m2l

2
2

)(
θ̈1

θ̈2

)
= −

(
(m1 +m2)gl1 0

0 m2gl2

)(
θ1

θ2

)
(63)

c) Résoudre les équations du mouvement. On suppose les condition initiales suivantes
θ1(0) = θ0, θ2(0) = 0 et θ̇1(0) = θ̇2(0) = 0.

Si on pose la masse réduite µ2 = m2/(m1 +m2) le système prend la forme
(
l1 µ2l2
l1 l2

)(
θ̈1

θ̈2

)
= −

(
θ1

θ2

)
(64)

Les valeur propres de la matrice

M = g

((
l1 µ2l2
l1 l2

))−1

=
g

1− µ2

(
l−1
1 −µ2 l

−1
1

−l−1
2 l−1

2

)
(65)

sont

ω+ = g
l1 + l2 +

√
(l2 − l1)2 + 4µ2 l1l2

2l1l2(1− µ2)

ω− =
g

ω+ l1l2(1− µ2)
=

2g

l1 + l2 +
√

(l2 − l1)2 + 4µ2 l1l2
, (66)

les vecteur propres associées sont

v± =

(
− 1

2l1

(
l2 − l1 +±

√
(l2 − l1)2 + 4µ2 l1l2

)

1

)
(67)
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La matrice P = (v+, v−) est la matrice de passage telle que

M = P−1

(
ω+ 0
0 ω−

)
P (68)

En posant (
α1

α2

)
:= P

(
θ1

θ2

)
(69)

La solution générale s’écrit

α1(t) = c1 cos(ω+t) + s1 sin(ω+t)
α2(t) = c2 cos(ω−t) + s2 sin(ω−t) , (70)

soit (
θ1(t)
θ2(t)

)
= P−1

(
c1 cos(ω+t) + s1 sin(ω+t)
c2 cos(ω−t) + s2 sin(ω−t)

)
. (71)

Les conditions initiales donnent

c1 = − l1θ0√
(l2 − l1)2 + 4µ2l1l2

(72)

et c1 + c2 = 0 ainsi que s1 = s2 = 0.

14.3. L’atome d’hydrogénoïde

On considère un atome Hydrogénoïde, obtenu en arrachant à un atome tous ses
électrons sauf un. Ces atomes se comportent comme un atome d’Hydrogène avec un
noyau de charge électrique réduite Z > 1.
L’électron est soumis au potentiel

V (r) = − Ze2

4πε0r
(73)

a) Donner l’expression du Lagrangien du système en coordonnées sphériques Le La-
grangien est la différence de l’énergie cinétique et potentiel de l’électron donc

L =
m

2
~̇r2 +

Ze2

4πε0r
. (74)

Comme le Lagrangien est invariant par rotations on passe en coordonnées sphé-
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riques

~r = r ~ur (75)
d~r

dt
=

dr

dt
~ur + r

(
dθ

dt
~uθ + sin θ

dφ

dt
~uφ

)
. (76)

En utilisant la notation ṙ = dr
dt , le Lagrangien prend la forme

L =
m

2
(ṙ2 + r2θ̇2 + r2 sin2 θφ̇2) +

Ze2

4πε0r
. (77)

b) Obtenir les équations d’Euler-Lagrange. Les moments conjugués sont

pr =
∂L
∂ṙ

= mṙ (78)

pθ =
∂L
∂θ̇

= mṙ2θ̇ (79)

pφ =
∂L
∂φ̇

= mṙ2 sin2 θφ̇ . (80)

Pour la cordonnée radiale r on a l’équation d’Euler-Lagrange

dpr
dt

=
∂L
∂r

= mr (θ̇2 + sin2 θφ̇2)− Ze2

4πε0r2
. (81)

Pour la coordonnée angulaire θ on a l’équation d’Euler-Lagrange

dpθ
dt

=
∂L
∂θ

=
mr2

2
sin(2θ)φ̇2 . (82)

Pour la coordonnée angulaire φ on a l’équation d’Euler-Lagrange

dpφ
dt

=
∂L
∂φ

= 0 . (83)

c) Montrer l’existence de quantités conservées. Interpréter. Comme le potentiel est
central le moment cinétique total ~ = ~r ×m~̇r est conservé, car

d

dt
~ = ~r × d

dt
(m~r) = ~r × ∂L

∂~r
= 0 (84)

car pour un potentiel central ∂L∂~r ∝ ~r.

On constate que pφ le moment conjugué à l’angle φ est une quantité conservée.
C’est une conséquence du fait que le Lagrangien est indépendant de la variable φ.
Elle se traduit par l’invariance par rotation du système autour de l’axe Oz. On
vérifie que la quantité conservé est la projection du moment angulaire ~ = ~r×m~̇r
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sur cet axe
pφ = ~ · ~uz (85)

où l’on a utilisé que ~uz = cos θ~ur − sin θ~uθ.

L’énergie du sytème est conservée par le lagrangien ne dépend pas du temps.

Et finalement, le vecteur de Runge-Lenz est conservé.

14.4. Pendule sphérique

On considère une masse m attachée à l’extrémité d’une tige rigide de masse négli-
geable, l’autre extrémité étant fixe par rapport au laboratoire. La longueur de la tige
est R. On note ϕ la colatitude (le pole de la sphère étant choisi à la verticale de son
centre) et θ la longitude (cf. figure 1).

Figure 1. – Schéma d’un pendule sphérique et photographie d’un manège fonction-
nant selon le principe du pendule sphérique.

a) Écrire le Lagrangien pour le pendule sphérique.

L’énergie cinétique du pendule est

T =
m

2
(ẋ2 + ẏ2 + ż2) , (86)

l’énergie potentielle
V = mgz , (87)

La contrainte du mouvement sur une sphère de rayon R est

R2 = x2 + y2 + z2 (88)

90



14.4. Pendule sphérique

en utilisant les angles d’Euler

x = R sin θ cosϕ (89)
y = R sin θ sinϕ (90)
z = R cos θ , (91)

on en déduit le Lagrangian

L := T − V (92)

=
mR2

2

(
θ̇2 + (sin θ)2ϕ̇2

)
−mgR cos θ . (93)

b) En déduire que ϕ, définit dans la figure 2, est une variable cyclique. Quelle est la
quantité conservée associée ? Trouvez l’autre quantité conservée.

Le Lagrangien est indépendant de φ donc

pϕ :=
∂L
∂ϕ̇

= mR2(sin θ)2 ϕ̇ (94)

est une constante du mouvement conservée dans le temps.

L’autre quantité conservée est l’énergie car le Lagrangien ne dépend pas du temps
(c’est la fonctionnelle de Beltrami discutée en PC3 appliqué au cas à deux va-
riables)

H := θ̇
∂L
∂θ̇

+ ϕ̇
∂L
∂ϕ̇
− L =

mR2

2

(
θ̇2 + (sin θ)2ϕ̇2

)
+mgR cos θ . (95)

c) Montrer que l’angle θ satisfait une équation de la forme

dθ

dt
= f(θ,E1, E2) (96)

où f est une fonction (que l’on explicitera) de θ et de deux constantes du mouve-
ment E1 et E2 (que l’on interprétera).

Puisque l’énergie est conservée alors

θ̇2 =
2H
mR2

− 2g

R
cos θ − (sin θ)2ϕ̇2 (97)

mais (sin θ)2ϕ̇2 = pϕ/(mR
2) donc

θ̇ =

(
2H
mR2

− 2g

R
cos θ − pϕ

m2R4 sin2 θ

) 1
2

(98)
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15. Corrigé du second devoir à la
maison (2012)

Devoir donné en 2012
Relativité restreinte (PHY 431)

Pierre Vanhove
Avis au lecteur :
Dans ce texte les questions sont italiques, les solutions sont en caractères droits.

15.1. Équation de Maxwell et sources

Le rang de covariance d’un tenseur est augmenté d’une unité par l’action de l’opé-
rateur ∂ de « composantes » {∂µ, µ = 0, 1, 2, 3} ≡ (∂tc ,

~∇). Le tenseur métrique (ηµν
ou son inverse ηµν) et le tenseur antisymétrique de Levi–Civita (εµνρσ ou εµνρσ avec
ε0123 = 1 = −ε0123) peuvent aussi être utilisés pour engendrer de nouveaux tenseurs
ou scalaires (invariants) à partir de tenseurs préalablement définis.
Si l’on considère le tenseur de Faraday F décrit le champ électromagnétique. Ses

composantes Fµν forment la matrice suivante :

Fµν :=




0 Ex/c Ey/c Ez/c
−Ex/c 0 −Bz By
−Ey/c Bz 0 −Bx
−Ez/c −By Bx 0


 . (1)

alors
Fµ = εµνρσ ∂νFρσ. (2)

a) Montrer l’équivalence

Fµ = 0⇐⇒ ∂µFνρ + ∂νFρµ + ∂ρFµν = 0 (3)

Fµ = εµνρσ∂νFρσ =
1

3
εµνρσ (∂µFνρ + ∂νFρµ + ∂ρFµν) (4)

Comme
1

6
εµνρλF

λ = ∂µFνρ + ∂νFρµ + ∂ρFµν (5)

on en déduit (3).
Remarque nous aurions pu travailler sans expliciter les coordonnées en posant
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F1 := Fµ eµ (6)
dF := (∂µFνρ + ∂νFρµ + ∂ρFµν) eµ ⊗ eν ⊗ eρ (7)

il faut alors montrer que F1 = dF. Nous avons

F1 =
1

3
(∂µFνρ + ∂νFρµ + ∂ρFµν) εµνρσ eµ (8)

il suffit de réaliser que
εµνρσ eµ = 3 eµ ⊗ eν ⊗ eρ . (9)

On a vu en PC5 que cette équation implique les équations de Maxwell suivantes

∇ · ~B = 0 absence de monopôles magnétiques (10)

∇× ~E +
∂ ~B

∂t
= 0 loi de Faraday (11)

b) Vérifiez les expressions des invariants relativistes du champs électromagnétique

ηµρηνσFµνFρσ = −2

(
~E2

c2
− ~B2

)
, (12)

εµνρσFµνFρσ = −8

c
~E · ~B (13)

Sous une transformation de Lorentz Λ nous avons vu en PC7 que

F ′µν = Fρσ Λµ
ρ Λν

σ , (14)

donc

I1 = ηµρηνσ Λµ
αΛν

βΛρ
γΛσ

δ FαβFγδ (15)
I2 = εµνρσ Λµ

αΛν
βΛρ

γΛσ
δ FαβFγδ (16)

Mais
ηµρηνσ Λµ

αΛρ
γ = ηαγ (17)

car la transformation de Lorentz préserve la métrique (ou de manière équivalente
le produit scalaire entre deux quadri-vecteurs) comme nous l’avons vu en PC3.
Donc

I1 = ηαγηβδFαβFγδ . (18)

Maintenant remarquons que

εµνρσ Λµ
αΛν

βΛρ
γΛσ

δ = (det Λ) εαβγδ . (19)
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Pour prouver cette identité, choisissez des valeurs de α, β, γ, δ et utiliser la défini-
tion du déterminant d’une matrice comme une somme alternée sur les permutations
S4 de (1234)

det Λ =
∑

σ S4

|σ|Λ1σ(1)Λ2σ(2)Λ3σ(3)Λ4σ(4) (20)

les valeurs de εµνρσ correspondent à la signature de la permutation (1234) →
(µνρσ). Comme les transformations de Lorentz ont det Λ = 1 puisque nous sommes
dans la composantes SO+↑(1, 3) du groupe des transformations (cf. PC3), et I2

est bien un invariant relativiste.

Montrons maintenant l’équation (16).

I2 = 8 (ε0123F01F23 + ε0213F02F13 + ε0321F03F21) (21)

= 8

(
Ex
c

(−Bx)− Ey
c

(By)−
Ez
c

(Bz)

)
(22)

= −8
ExBx + EyBy + EzBz

c
= −8

~E · ~B
c

(23)

c) Montrez que l’équation

∂µF
µν = µ0 j

ν , (24)

implique les équations de Maxwell avec sources

~∇ · ~E =
%

ε0
loi de Gauss (25)

~∇× ~B − 1

c2

∂ ~E

∂t
= µ0

~j loi d′Ampère (26)

où % et ~j sont les densités de charge et de courant (rappel : µ0ε0c
2 = 1).

Tout d’abord spécifions ν = 0. Nous avons la suite d’équivalences suivante

∂µF
µ0 = µ0 j

0 (27)
⇐⇒ ∂iF

i0 = µ0 c% (28)

⇐⇒ ∂i
Ei

c
= µ0 c% (29)

⇐⇒ ~∇ · ~E =
%

ε0
. (30)
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pour ν = i avec i = 1, 2, 3 on a la suite d’équivalence suivante

∂µF
µi = µ0j

i (31)
⇐⇒ ∂0F

0i + ∂jF
ji = µ0 j

i (32)

⇐⇒ − ∂

∂(ct)

Ei

c
+ εijk∂jBk = µ0 j

i (33)

⇐⇒ − 1

c2

∂Ei

∂t
+ (~∇× ~B)i = µ0 j

i (34)

d) Montrer que J = {jν , ν = 0, 1, 2, 3} :=
(
c%,~j = %~v

)
sont les composantes d’un

quadrivecteur J, dit de densité de courant, si la charge électrique est invariante
sous les transformation de Lorentz.

Comme J = %(c,~v) = %U puisque % est invariant de Lorentz avec J est un quadri-
vecteur de même nature que U.

Alternativement, comme nous savons que jµ = µ−1
0 ∂νF

µν est comme la dérivée
d’un quadri-tenseur est un quadri-tenseur, alors jµ sont les composantes d’un
quadri-vecteur.

On peut aussi écrire ces équations sans expliciter les indices en introduisant

d ? F := ∂µF
µν eν (35)

Alors l’équation de Maxwell avec source s’écrit

d ? F = µ0 ?J . (36)

En utilisant le tenseur ε on montre que

6 εµνκλεκλρσ∂µF
ρσ = ∂µF

µν . (37)

Sinon pose

?F := εµνρσ Fρσ e
ρ ⊗ eσ (38)

?J :=
1

4
εµνρσ Jσ e

ρ ⊗ eσ ⊗ eρ (39)

Les équations de Maxwell sans sources et avec sources s’écrivent alors

dF = 0 (40)
d ? F = µ0 ?J . (41)

e) Montrer que les équations inhomogènes de Maxwell imposent l’équation de conti-
nuité

∂%

∂t
+ ~∇ ·~j = 0. (42)
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La divergence de (26) donne

− 1

c2
~∇ · ∂t ~E = µ0

~∇ ·~j (43)

la dérivée temporelle de (25) donne

∂t~∇ · ~E =
1

ε0
∂t% (44)

en combinant ces deux équations on obtient la relation de continuité demandée.

f) Écrire cette équation en utilisant le quadri-vecteur J. Obtenir cette équation direc-
tement à partir de (24).

Cette équation s’écrit simplement

∂ct(cρ) + ∂ij
i = ∂µJ

µ = 0 (45)

En dérivant (24) on obtient

∂µ∂νF
µν = µ0∂νJ

ν (46)

mais comme Fµν est antisymétrique le membre de gauche est nul.

En utilisant les notations introduites dans (39) cette équation s’écrit simplement
comme

(d ? J) = 0 . (47)

Nous avons vu en PC5 que les équations homogènes de Maxwell dans (3), ou de
manière équivalente (10)-(11) sont satisfaites si Fµν résulte d’une forme de potentiel
A = (A0/c, ~A) selon

Fµν = ∂µAν − ∂νAµ . (48)

Nous avons vu que A est défini à la dérivée d’une fonction arbitraire près

A→ A′ +∇χ (49)

Nous avons vu aussi que pour fixer cette liberté de jauge, on impose une contrainte.
Un contrainte invariante de Lorentz est la jauge de Lorenz

∂µA
µ = 0 . (50)

g) Montrer que dans cette jauge les équations de Maxwell inhomogènes deviennent

2A = µ0 J, (51)

où 2 := ∂µ∂
µ = 1

c2
∂2

∂t2
−4 est l’opérateur d’Alembertien.
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On applique (24)

∂µF
µν = ∂µ(∂µAν − ∂νAµ) = ∂µ∂

µAν = 2Aν . (52)

15.2. Effet de seuil

On considère la réaction de désintégration d’un pion π− sur un proton p+ considéré
au repos dans le repère du laboratoire

π− + p+ → K0 + Λ0 (53)

Le méson pion π−, composé par la pair de quark ūd, a une masse mπ−c
2 =

140 MeV. Le baryon proton, composé des trois quarks uud, a une masse mp+c2 =
938 MeV. Le méson kaon K0, est une superposition des états liées des pairs de quarks
ds̄ et d̄s. Il a une masse de mK0c2 = 498 MeV. Finalement, le baryon Λ0, composé
des trois quarks uds, a une masse de mΛ0 = 1116 MeV.

a) Calculez l’énergie de seuil du pion pour la réaction puisse avoir lieu

En considérant le quadri-impulsion initiale Pinitiale = Pπ− + Pp+

s = (Pinitiale)2 = (m2
π− +m2

p+)c2 + 2Eπ+Ep+ ≥ (m2
K0 +mΛ0)2c2 (54)

comme Ep+ = mp+c2 car le proton est au repos. On a donc l’inégalité suivante

Eπ− ≥
(mK0 +mΛ0)2 − (m2

π− +m2
p+)

2mp+

c2 (55)

donc
Eπ− ≥ 909.14MeV (56)

Dans une expérience où le pion a une énergie cinétique incidente de 2.36 GeV, le
baryon Λ0 est observé avec une énergie cinétique de 0.15 GeV, et dans une direction
à 45◦ par rapport au mouvement du pion. On rappelle que 1GeV= 103 MeV.

b) Calculez le facteur γCM dans le repère du centre de masse. La quadri-impulsion
initiale

Pinitial = Pπ− + Pp+ =

(
Eπ−+mp+c

2

c
~pπ−

)

laboratoire

. (57)

Pour passer dans le référentiel du centre de masse

Pinitial =

(
mtc

0

)

CM
, (58)

avec
s = (Pinitial)2 = (mtc)

2 = (m2
π− +m2

p+) c2 + 2Eπ−mp+ . (59)
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Dans le référentiel du laboratoire la quadri-impulsion a pour composantes

Pinitial = γCM

(
mtc
~p

)

laboratoire
, (60)

on en déduit donc

γCM =
Eπ− +mp+c2

mtc2
. (61)

Comme l’énergie du Pion est de

Eπ− = Tπ− +mπ−c
2 = 2503.92MeV (62)

mtc
2 = 2365.75MeV , (63)

donc
γCM = 1.455 . (64)

c) Calculez l’énergie cinétique du kaon K0 dans le repère du laboratoire et du centre
de masse.

Comme Pπ− + Pp+ = PΛ0 + PK0 alors

(PK0 −Pp+)2 = (m2
K0 +m2

p+) c2 − 2EK0 mp+ (65)

= (m2
Λ0 +m2

π−) c2 − 2(EΛ0 Eπ− − ~pΛ0 · ~pπ−) (66)

Alors

EK0 =
(m2

K0 +m2
p+ −m2

Λ0 −m2
π−) c2 + 2(EΛ0 Eπ− − ~pΛ0 · ~pπ−)

2mp+

(67)

Cette relation est équivalente à la conservation de l’énergie

Eπ− + Ep+ = EΛ0 + EK0 (68)

Si on utilise la conservation de l’impulsion ~pπ− = ~pΛ0 + ~pK0 et que EK0 = m2
K0c

4 +
~p2
K0c

2. L’énergie du Λ0 dans le référentiel du laboratoire est

EΛ0 = 1267.1MeV . (69)

ainsi que

c2 p2
Λ0 = E2

Λ0 −m2
Λ0c

4 = (600MeV )2 (70)
c2 p2

π− = E2
π− −m2

π−c
4 = (2500MeV )2 (71)

avec ~pπ− · ~pΛ0 = |pπ− | |pΛ0 | cos(π/4) ' (1030MeV/c)2. Donc l’énergie cinétique vaut

TK0 = EK0 −mK0c2 = 1680.43MeV (72)

Dans le référentiel du centre nous avons que
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Pinitial =

(
mtc

0

)

CM
= Pfinal =

(
ECM
K0 +ECM

Λ0

c
0

)
(73)

or en utilisant que ~pCM
Λ0 = −~pCM

K0 on a la relation suivante

(ECM
Λ0 )2 = m2

Λ0c
4 + (~pCM

Λ0 )2 (74)
= (m2

Λ0 −m2
K0) c4 + (ECM

K0 )2 (75)

l’énergie cinétique valent

ECM
K0 =

m2
t +m2

K0 −m2
Λ0

mt
c2 = 972.1MeV (76)

T CM
K0 = ECM

K0 −mK0c2 = 474.1MeV . (77)

15.2.1. Contexte historique et expérimental

Depuis leur découverte en 1947 les Kaons ont été une source d’information im-
portante sur la nature des interactions fondamentales. Ils ont joué un rôle important
dans la compréhension du modèle des quarks. Les Kaons portent un nombre quantique
d’étrangeté S, induit par Murray Gell-Mann (Nobel 1969) et Kazuhiko Nishijima. Ils
introduisirent ce nombre quantique pour expliquer la facile production des Kaons et
leur désintégration plus lente que ce qui est attendu compte tenu de leur masse. Ce
nouveau nombre quantique d’étrangeté est postulé être conservé lors des collisions
(comme pour celle donnée ci dessus), mais pas lors de la désintégration de la parti-
cule.
Un autre particularité du Kaon neutre K0 est d’avoir une antiparticule violant la

symétrie de parité. La Kaon court K0
S = (ds̄ + sd̄)/

√
2 a un temps de vie de deux

ordre de grandeur inférieur à celui du Kaon long K0
L = (ds̄+ sd̄)/

√
2. Ces particules

sont leur propre antiparticule.
C’est en utilisant des Kaons qu’a été découverte de la violation de la symétrie CP,

responsable de l’asymétrie entre matière et antimatière dans l’univers. Cette expé-
rience a reçu le prix Nobel en 1980.

15.3. Pendule sphérique

On considère une masse m attachée à l’extrémité d’une tige rigide de masse négli-
geable, l’autre extrémité étant fixe par rapport au laboratoire. La longueur de la tige
est R. On note ϕ la colatitude (le pole de la sphère étant choisi à la verticale de son
centre) et θ la longitude (cf. figure 1).

a) Écrire le Lagrangien pour le pendule sphérique.

100



15.3. Pendule sphérique

Figure 1. – Pendule sphérique

L’énergie cinétique du pendule est

T =
m

2
(ẋ2 + ẏ2 + ż2) , (78)

l’énergie potentielle
V = mgz , (79)

La contrainte du mouvement sur une sphère de rayon R est

R2 = x2 + y2 + z2 (80)

en utilisant les angles d’Euler

x = R sin θ cosϕ (81)
y = R sin θ sinϕ (82)
z = R cos θ , (83)

on en déduit le Lagrangian

L := T − V (84)

=
mR2

2

(
θ̇2 + (sin θ)2ϕ̇2

)
−mgR cos θ . (85)

b) En déduire que ϕ est une variable cyclique. Quelle est la quantité conservée asso-
ciée ? Trouvez l’autre quantité conservée.

Le Lagrangien est indépendant de φ donc

pϕ :=
∂L
∂ϕ̇

= mR2(sinϕ)2 ϕ̇ (86)

est une constant du mouvement conservée dans le temps.
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L’autre quantité conservée est l’énergie car le Lagrangien ne dépend pas du temps

H := θ̇
∂L
∂θ̇

+ ϕ̇
∂L
∂ϕ̇
− L =

mR2

2

(
θ̇2 + (sin θ)2ϕ̇2

)
+mgR cos θ . (87)

c) Montrer que l’on a

dθ

dt
= f(θ,E1, E2) (88)

où f est une fonction (que l’on explicitera) de θ et de deux constantes du mouve-
ment E1 et E2 (que l’on interprétera).

Puisque l’énergie est conservée alors

θ̇2 =
2H
mR2

− 2g

R
cos θ − (sin θ)2ϕ̇2 (89)

mais (sin θ)2ϕ̇2 = pϕ/(mR
2) donc

θ̇ =

(
2H
mR2

− 2g

R
cos θ − pϕ

mR2

) 1
2

(90)

La résolution de cette équation s’exprime au moyen de la fonction elliptique de
première espèce F (x, k)

t = A

∫ θ(t)

θ0

dx√
B + cos(x)

=
2iA√
1−B

[
sign(sin

(x
2

)
)F

(
cos
(x

2

)
,

√
2

1−B

)]θ(t)

θ0
(91)

où B = H
mgR −

pϕ
2mgR et A =

√
R/(2g).

Les fonctions elliptiques ont été introduites par Jacobi, Legendre et d’autre pour la
résolution des équations différentielles des systèmes physique comme les pendules.

Les manèges sont des pendules, et certains de pendules sphériques comme sur la
photographie ci-dessous

Figure 2. – Manège fonctionnant comme un pendule sphérique
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16. Corrigé du second devoir à la
maison

donné en 2013
Relativité restreinte (PHY 431)

Pierre Vanhove
à rendre en PC 8 (11/01/2013)

Avis au lecteur :
Dans ce texte les questions sont italiques, les solutions sont en caractères droits.

16.1. Équation de Maxwell et sources

Le rang de covariance d’un tenseur est augmenté d’une unité par l’action de l’opé-
rateur ∂ de « composantes » {∂µ, µ = 0, 1, 2, 3} ≡ (∂tc ,

~∇). Le tenseur métrique (ηµν
ou son inverse ηµν) et le tenseur antisymétrique de Levi–Civita (εµνρσ ou εµνρσ avec
ε0123 = 1 = −ε0123) peuvent aussi être utilisés pour engendrer de nouveaux tenseurs
ou scalaires (invariants) à partir de tenseurs préalablement définis.
Si l’on considère le tenseur de Faraday F décrit le champ électromagnétique. Ses

composantes Fµν forment la matrice suivante :

Fµν :=




0 Ex/c Ey/c Ez/c
−Ex/c 0 −Bz By
−Ey/c Bz 0 −Bx
−Ez/c −By Bx 0


 . (1)

alors
Fµ = εµνρσ ∂νFρσ. (2)

a) Montrer l’équivalence

Fµ = 0⇐⇒ ∂µFνρ + ∂νFρµ + ∂ρFµν = 0 (3)

Fµ = εµνρσ∂νFρσ =
1

3
εµνρσ (∂µFνρ + ∂νFρµ + ∂ρFµν) (4)

Comme
1

6
εµνρλF

λ = ∂µFνρ + ∂νFρµ + ∂ρFµν (5)

on en déduit (3).
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Remarque nous aurions pu travailler sans expliciter les coordonnées en posant

F1 := Fµ eµ (6)
dF := (∂µFνρ + ∂νFρµ + ∂ρFµν) eµ ∧ eν ∧ eρ (7)

il faut alors montrer que F1 = dF. Nous avons

F1 =
1

3
(∂µFνρ + ∂νFρµ + ∂ρFµν) εµνρσ eµ (8)

il suffit de réaliser que
εµνρσ eµ = 3 eµ ∧ eν ∧ eρ . (9)

On a vu en PC5 que cette équation implique les équations de Maxwell suivantes

∇ · ~B = 0 absence de monopôles magnétiques (10)

∇× ~E +
∂ ~B

∂t
= 0 loi de Faraday (11)

b) Vérifiez les expressions des invariants relativistes du champs électromagnétique

ηµρηνσFµνFρσ = −2

(
~E2

c2
− ~B2

)
, (12)

εµνρσFµνFρσ = −8

c
~E · ~B (13)

Sous une transformation de Lorentz Λ

F ′µν = Fρσ Λµ
ρ Λν

σ , (14)

donc

I1 = ηµρηνσ Λµ
αΛν

βΛρ
γΛσ

δ FαβFγδ (15)
I2 = εµνρσ Λµ

αΛν
βΛρ

γΛσ
δ FαβFγδ (16)

Mais
ηµρηνσ Λµ

αΛρ
γ = ηαγ (17)

car la transformation de Lorentz préserve la métrique (ou de manière équivalente
le produit scalaire entre deux quadri-vecteurs) comme nous l’avons vu en PC3.
Donc

I1 = ηαγηβδFαβFγδ . (18)
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Maintenant remarquons que

εµνρσ Λµ
αΛν

βΛρ
γΛσ

δ = (det Λ) εαβγδ . (19)

Pour prouver cette identité, choisissez des valeurs de α, β, γ, δ et utiliser la défini-
tion du déterminant d’une matrice comme une somme alternée sur les permutations
S4 de (1234)

det Λ =
∑

σ S4

|σ|Λ1σ(1)Λ2σ(2)Λ3σ(3)Λ4σ(4) (20)

les valeurs de εµνρσ correspondent à la signature de la permutation (1234) →
(µνρσ). Comme les transformations de Lorentz ont det Λ = 1 puisque nous sommes
dans la composantes SO+↑(1, 3) du groupe des transformations (cf. PC3), et I2

est bien un invariant relativiste.

Montrons maintenant l’équation (16).

I2 = 8 (ε0123F01F23 + ε0213F02F13 + ε0321F03F21) (21)

= 8

(
Ex
c

(−Bx)− Ey
c

(By)−
Ez
c

(Bz)

)
(22)

= −8
ExBx + EyBy + EzBz

c
= −8

~E · ~B
c

(23)

c) Montrez que l’équation

∂µF
µν = µ0 j

ν , (24)

implique les équations de Maxwell avec sources

~∇ · ~E =
%

ε0
loi de Gauss (25)

~∇× ~B − 1

c2

∂ ~E

∂t
= µ0 ~ loi d′Ampère (26)

où % et ~ sont les densités de charge et de courant (rappel : µ0ε0c
2 = 1).

Tout d’abord spécifions ν = 0. Nous avons la suite d’équivalences suivante

∂µF
µ0 = µ0 j

0 (27)
⇐⇒ ∂iF

i0 = µ0 c% (28)

⇐⇒ ∂i
Ei

c
= µ0 c% (29)

⇐⇒ ~∇ · ~E =
%

ε0
. (30)
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pour ν = i avec i = 1, 2, 3 on a la suite d’équivalence suivante

∂µF
µi = µ0j

i (31)
⇐⇒ ∂0F

0i + ∂jF
ji = µ0 j

i (32)

⇐⇒ − ∂

∂(ct)

Ei

c
+ εijk∂jBk = µ0 j

i (33)

⇐⇒ − 1

c2

∂Ei

∂t
+ (~∇× ~B)i = µ0 j

i (34)

d) Montrer que J = {jν , ν = 0, 1, 2, 3} := (c%,~ = %~v ) sont les composantes d’un
quadrivecteur J, dit de densité de courant, si la charge électrique est invariante
sous les transformation de Lorentz.

Comme J = %
γ (c,~v) = %

γ U puisque U est invariant de Lorentz il faut montrer
que %/γ est invariant de Lorentz. On dit que la charge Q est invariante donc la
densité de charge % = dQ/dV est sensible à la contraction des longueurs. Sous une
transformation de Lorentz dV → dV/γ, et le facteur γ est justement présent pour
compenser cet effet sur la densité de charge.

Alternativement, comme nous savons que jµ = µ−1
0 ∂νF

µν est comme la dérivée
d’un quadri-tenseur est un quadri-tenseur, alors jµ sont les composantes d’un
quadri-vecteur.

On peut aussi écrire ces équations sans expliciter les indices en introduisant

d ? F := ∂µF
µν eν (35)

Alors l’équation de Maxwell avec source s’écrit

d ? F = µ0 ?J . (36)

En utilisant le tenseur ε on montre que

6 εµνκλεκλρσ∂µF
ρσ = ∂µF

µν . (37)

Sinon pose

?F := εµνρσ Fρσ e
ρ ⊗ eσ (38)

?J :=
1

4
εµνρσ Jσ e

ρ ⊗ eσ ⊗ eρ (39)

Les équations de Maxwell sans sources et avec sources s’écrivent alors

dF = 0 (40)
d ? F = µ0 ?J . (41)
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16.1. Équation de Maxwell et sources

e) Montrer que les équations inhomogènes de Maxwell imposent l’équation de conti-
nuité

∂%

∂t
+ ~∇ · ~ = 0. (42)

La divergence de (26) donne

− 1

c2
~∇ · ∂t ~E = µ0

~∇ · ~ (43)

la dérivée temporelle de (25) donne

∂t~∇ · ~E =
1

ε0
∂t% (44)

en combinant ces deux équations on obtient la relation de continuité demandée.

f) Écrire cette équation en utilisant le quadri-vecteur J. Obtenir cette équation direc-
tement à partir de (24).

Cette équation s’écrit simplement

∂ct(cρ) + ∂ij
i = ∂µJ

µ = 0 (45)

En dérivant (24) on obtient

∂µ∂νF
µν = µ0∂νJ

ν (46)

mais comme Fµν est antisymétrique le membre de gauche est nul.

En utilisant les notations introduites dans (39) cette équation s’écrit simplement
comme

(d ? J) = 0 . (47)

Nous avons vu en PC5 que les équations homogènes de Maxwell dans (3), ou de
manière équivalente (10)-(11) sont satisfaites si Fµν résulte d’une forme de potentiel
A = (A0/c, ~A) selon

Fµν = ∂µAν − ∂νAµ . (48)

Nous avons vu que A est défini à la dérivée d’une fonction arbitraire près

A→ A′ +∇χ (49)

Nous avons vu aussi que pour fixer cette liberté de jauge, on impose une contrainte.
Un contrainte invariante de Lorentz est la jauge de Lorenz

∂µA
µ = 0 . (50)

g) Montrer que dans cette jauge les équations de Maxwell inhomogènes deviennent

2A = µ0 J, (51)
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16. Corrigé du second devoir à la maison

où 2 := ∂µ∂
µ = 1

c2
∂2

∂t2
−4 est l’opérateur d’Alembertien.

On applique (24)

∂µF
µν = ∂µ(∂µAν − ∂νAµ) = ∂µ∂

µAν = 2Aν . (52)

16.2. Géodésique sur la sphère

On veut déterminer le chemin le plus court entre deux points sur une sphère de
rayon R.

a) Si s est un paramètre le long de la courbe exprimer la longueur du chemin selon

l(~r) =

∫ sB

sA

f(~r, ~̇r; s) ds . (53)

L’arc élémentaire a une longueur

dx2 + dy2 + dz2 = (ẋ2 + ẏ2 + ż2) ds2 (54)

donc la fonctionnelle est
f(~r, ~̇r; s) =

√
~̇r2 . (55)

b) Afin de tenir compte de la contrainte que le mouvement s’effectue sur une sphère
de rayon R on modifie cette fonction en introduisant un multiplicateur de Lagrange
µ(s), et l’on cherche à minimiser

l(~r) =

∫ sB

sA

(f(~r, ~̇r; s)− µ(t) g(~r, ~̇r; s)) ds . (56)

Donner l’expression de h(~r, ~̇r; s) = f(~r, ~̇r; s)−µ(s) g(~r, ~̇r; s). Pour tenir compte de
la contrainte ~r2 = x(s)2 + y(s)2 + z(s)2 = R2 on considère la fonctionnelle

h(~r, ~̇r; s) =
√
~̇r2 − µ(s) (~r2 −R2) . (57)

c) En déduire que le chemin le plus court est un grand cercle passant par les points
A et B. L’équation d’Euler-Lagrange pour x donne

∂h

∂x
= −2µx (58)

=
d

ds

∂h

∂ẋ
=

d

ds

ẋ√
ẋ2 + ẏ2 + ż2

. (59)

Avec des équation similaires pour y et z. En notation vectoriel nous avons

d

ds

~̇r√
~̇r2

= −2µ~r . (60)
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16.3. L’atome d’hydrogénoïde

On voit que ~r est colinéaire au vecteur de norme unité ~u := ~r/
√
~̇r2. On en déduit

que
d

ds
(~r × ~u) =

d~r

ds
× ~u+ ~r × d~u

ds
= 0 . (61)

Où l’on a utilisé que ~r × d~u
ds = 0 comme conséquence de (60). Par définition ~u et

d~r/ds sont colinéaires donc d~r
ds × ~u = 0. Ainsi le long de la trajectoire entre les

points A et B le vecteur ~r × ~u est constant. Les vecteurs ~r et ~u sont dans le plan
équatorial passant par A et B. Cela donne deux cercles, un seul est le plus court.

16.3. L’atome d’hydrogénoïde

Figure 1. – manuscrit de l’article de Niels Bohr de juillet 1913 (avec la permission
de l’« Archive Niels Bohr », Copenhague)

On considère un atome Hydrogénoïde, obtenu en arrachant à un atome tous ses
électrons sauf un. Ces atomes se comportent comme un atome d’Hydrogène avec un
noyau de charge électrique réduite Z > 1.
L’électron est soumis au potentiel

V (r) = − Ze2

4πε0r
(62)

a) Donner l’expression du Lagrangien du système en coordonnées sphériques Le La-
grangien est la différence de l’énergie cinétique et potentiel de l’électron donc

L =
m

2
~̇r2 +

Ze2

4πε0r
. (63)

Comme le Lagrangien est invariant par rotations on passe en coordonnées sphé-
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riques

~r = r ~ur (64)
d~r

dt
=

dr

dt
~ur + r(

dθ

dt
~uθ + sin θ

dφ

dt
~uφ . (65)

En utilisant la notation ṙ = dr
dt , le Lagrangien prend la forme

L =
m

2
(ṙ2 + r2θ̇2 + r2 sin2 θφ̇2) +

Ze2

4πε0r
. (66)

b) Obtenir les équations d’Euler-Lagrange. Les moments conjugués sont

pr =
∂L
∂ṙ

= mṙ (67)

pθ =
∂L
∂θ̇

= mṙ2θ̇ (68)

pφ =
∂L
∂φ̇

= mṙ2 sin2 θφ̇ . (69)

Pour la cordonnée radiale r on a l’équation d’Euler-Lagrange

dpr
dt

=
∂L
∂r

= mr (θ̇2 + sin2 θφ̇2)− Ze2

4πε0r2
. (70)

Pour la coordonnée angulaire θ on a l’équation d’Euler-Lagrange

dpθ
dt

=
∂L
∂θ

=
mr2

2
sin(2θ)φ̇2 . (71)

Pour la coordonnée angulaire φ on a l’équation d’Euler-Lagrange

dpφ
dt

=
∂L
∂φ

= 0 . (72)

c) Montrer l’existence de quantités conservées. Interpréter. On constate que pφ le
moment conjugué à l’angle φ est une quantité conservée. C’est une conséquence
du fait que le Lagrangien est indépendant de la variable φ. Elle se traduit par
l’invariance par rotation du système autour de l’axe Oz. On vérifie que la quantité
conservé est la projection du moment angulaire ~ = ~r ×m~̇r sur cet axe

pφ = ~ · ~uz (73)

où l’on a utilisé que ~uz = cos θ~ur − sin θ~uθ.
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16.4. Pendule sphérique

16.4. Pendule sphérique

On considère une masse m attachée à l’extrémité d’une tige rigide de masse négli-
geable, l’autre extrémité étant fixe par rapport au laboratoire. La longueur de la tige
est R. On note ϕ la colatitude (le pole de la sphère étant choisi à la verticale de son
centre) et θ la longitude (cf. figure 1).

Figure 2. – Schéma d’un pendule sphérique et photographie d’un manège fonction-
nant selon le principe du pendule sphérique.

a) Écrire le Lagrangien pour le pendule sphérique.

L’énergie cinétique du pendule est

T =
m

2
(ẋ2 + ẏ2 + ż2) , (74)

l’énergie potentielle
V = mgz , (75)

La contrainte du mouvement sur une sphère de rayon R est

R2 = x2 + y2 + z2 (76)

en utilisant les angles d’Euler

x = R sin θ cosϕ (77)
y = R sin θ sinϕ (78)
z = R cos θ , (79)

on en déduit le Lagrangian

L := T − V (80)

=
mR2

2

(
θ̇2 + (sin θ)2ϕ̇2

)
−mgR cos θ . (81)
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16. Corrigé du second devoir à la maison

b) En déduire que ϕ, définit dans la figure 2, est une variable cyclique. Quelle est la
quantité conservée associée ? Trouvez l’autre quantité conservée.

Le Lagrangien est indépendant de φ donc

pϕ :=
∂L
∂ϕ̇

= mR2(sin θ)2 ϕ̇ (82)

est une constante du mouvement conservée dans le temps.

L’autre quantité conservée est l’énergie car le Lagrangien ne dépend pas du temps
(c’est la fonctionnelle de Beltrami discutée en PC4 appliqué au cas à deux va-
riables)

H := θ̇
∂L
∂θ̇

+ ϕ̇
∂L
∂ϕ̇
− L =

mR2

2

(
θ̇2 + (sin θ)2ϕ̇2

)
+mgR cos θ . (83)

c) Montrer que l’angle θ satisfait une équation de la forme

dθ

dt
= f(θ,E1, E2) (84)

où f est une fonction (que l’on explicitera) de θ et de deux constantes du mouve-
ment E1 et E2 (que l’on interprétera).

Puisque l’énergie est conservée alors

θ̇2 =
2H
mR2

− 2g

R
cos θ − (sin θ)2ϕ̇2 (85)

mais (sin θ)2ϕ̇2 = pϕ/(mR
2) donc

θ̇ =

(
2H
mR2

− 2g

R
cos θ − pϕ

m2R4 sin2 θ

) 1
2

(86)
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partCompléments : exercices non donnés, etc.
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17. Suppléments

Relativité restreinte (PHY 431)
Pierre Vanhove

Dans ce chapitre sont réunis les exercices qui n’ont pas été donnés ou traités en PC.
Les exercices sont ici des textes bruts non travaillés souvent copiés de ceux données
par Cédric, Françis ou Marios.

17.1. Vitesse, célérité et rapidité

On peut définir trois vitesses différentes associées au mouvement relatif du référen-
tiel R′ par rapport au référentiel R : la vitesse (réduite) β = v/c, la rapidité φ(v), et
la célérité γ β = sinhφ(v).

a) Rappeler à quoi correspondent vitesse réduite et célérité.

Afin de déterminer un procédé expérimental pour mesurer la rapidité on considère
un astronaute dans un vaisseau sans ouvertures. On suppose que cet astronaute est
muni d’un accéléromètre (un fil à plomb par exemple). À l’instant initial la fusée
est au repos par rapport à un repère fixe de référence R formés par des étoiles fixes
lointaines. À la fin de la phase d’accélération la fusée a une vitesse V .
On dénotera R′ le référentiel de la fusée à un instant donnée de son mouvement.

Ce référentiel n’est plus galiléen car accéléré.
À un instant donné la fusée a une vitesse v par rapport au repère fixe R. Pendant

l’intervalle de temps propre dτ infinitésimal la vitesse de la fusée s’accroit de dv′ par
rapport à son référentiel R′.

b) Déterminer l’accroissement de vitesse dv′ mesurée dans la fusée par l’astronaute,
en fonction de l’accroissement vitesse dv par rapport au repère fixe R.

c) Montrer que l’intégrale
∫
adτ pendant la phase d’accélération donne la rapidité.

d) Interpréter le résultat. À quoi correspond la rapidité en physique galiléenne non
relativiste.

17.1.1. Correction : Vitesse, célérité et rapidité

On peut définir trois vitesses différentes associées au mouvement relatif du référen-
tiel R′ par rapport au référentiel R : la vitesse (réduite) β = v/c, la rapidité φ(v), et
la célérité γ β = sinhφ(v).
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a) La vitesse réduite β est la vitesse de l’origine du référentiel R′ par rapport au
référentiel R donnée par

β =
dx

cdt
. (1)

La célérité est définie par dx/cdt′ mais comme dt′ = dt/γ on a

dx

cdt′
= γ

dx

cdt
= γ β = sinφ(v) . (2)

b) Pendant un intervalle de temps propre cdt′ pour la fusée, la vitesse de la fusée par
rapport au référentiel fixe passe de v à v+dv. L’accroissement de vitesse est donné
par

dv′ =
v + dv − v

1 + (v+dv)(−v)
c2

' dv

1− v2

c2

(3)

c) L’intégrale de dv′ pendant la phase d’accélération donne a revoir serieusement

V ′ =
∫ V ′

0
dv′ =

∫ V

0

dv

1− v2

c2

= c tanh−1 V

c
= c φ(V ) (4)

d) Interpréter le résultat. À quoi correspond la rapidité en physique galiléenne non
relativiste. ? ? ?

17.2. Champ électromagnétique et électrodynamique non
linéaire

On considére l’électrodynamique du vide. Au champ électromagnétique on associé
un tenseur d’énergie–impulsion

Tµν =
1

µ0

(
1

4
ηµν F ρσ Fρσ + Fµρ F ν

ρ

)
, (5)

a) Vérifier que ce tenseur est symétrique et qu’il est conservé ∂µTµν = 0. Pour cela
on utilisera l’équation (1), ainsi que les les équations du mouvement des potentiels
φ et ~A trouvées dans l’exercise précédant et la condition de jauge (9).

b) Quels invariants relativistes peut-on construire avec les composantes du tenseur
de Faraday Fµν ?

c) Exprimer en fonction de ~E et ~B l’énergie E =
∫
d3xT 00 et l’impulsion P i =∫

d3xT 0i/c du champ.
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17.3. Effet Doppler-Fizeau transverse

On va s’intéresser maintenant au problème de l’électrodynamique non linéaire, où
la dynamique du champ électromagnétique résulte de l’action de Dirac–Born–Infeld :

SDBI = − κ2

µ0c

∫
d4x



√

1 +
FµνFµν

2κ2
−
(
εµνρσFµνFρσ

8κ2

)2

− 1


 (6)

= − κ2

µ0c

∫
dt d3x




√√√√
1−

~E2 − ~B2c2

κ2c2
−

(
~E · ~B

)2

κ4c2
− 1


 . (7)

où εµνρσ est le tenseur totalement antisymétrique tel que ε0123 = 1 et εijkl =signature
de la permutation (ijkl).

d) Montrer que cette dernière restitue l’action de Maxwell–Faraday à la limite
E/c,B � κ.

e) Montrer que cet expression implique l’existence d’un champs électrique limite.
Faire un parallèle avec l’action classique et relativiste d’une particule ponctuelle.

17.2.1. Contexte historique

Born et Infeld ont proposé cette action dans les années 1930 afin de supprimer le
problème de l’énergie propre infinie d’un électron existant dans la théorie linéaire de
Maxwell. Cette action joue un rôle important pour le description d’objet étendu (les
D-branes) en théorie des cordes.

17.3. Effet Doppler-Fizeau transverse

a terminer
À cause du phénomène de contraction des longueurs les solides n’existent pas en

relativité restreinte contrairement au cas de la physique Galiléenne classique.
Les quanta de lumière sont représentés par les photons. La correspondance

onde–corpuscule est traduite par la relation de de Broglie entre l’impulsion et la
longueur d’onde

~p =
h

λ
~e (8)

où ~e est une vecteur unité selon la direction de propagation, et la relation de Planck
pour l’énergie

E = hν . (9)

La relation E = |~p| c implique la relation de dispersion entre la fréquence et la longueur
d’onde

λν = c . (10)

119



17. Suppléments

Un signal lumineux est émis par une source S, en mouvement uniforme de vitesse
~VS par rapport à un observateur O. En utilisant la loi de transformation du qua-
drivecteur énergie–impulsion pour les particules de masse nulle, montrer qu’il existe
un effet Doppler– Fizeau transverse, se produisant lorsque la réception du signal par
l’observateur a lieu perpendiculairement à la trajectoire de la source (~e ⊥ ~VS , où ~e
caractérise la direction de réception).

• Fournir la relation entre ν (fréquence reçue) et νS (fréquence émise).

• Déterminer l’aberration entre ~e (direction de réception) et ~eS (direction d’émis-
sion).

• Pourquoi cet effet est-il purement relativiste ?

17.4. Le cylindre en rotation

Un cylindre dont l’axe est confondu avec l’axe Ox du référentiel d’inertie R est
animé d’un mouvement de rotation autour de cet axe, de vitesse angulaire constante
ω.
Montrer que dans le référentiel R′, en mouvement uniforme par rapport à R de

vitesse ~V = V ~ex, le cylindre paraît tordu autour de son axe, d’un angle α = Bω
c par

unite de longueur propre. Quelle est la vitesse angulaire mesurée dans R′ ?

17.5. Particule uniformément accélérée

Figure 1. – Vue de l’accélérateur linéaire du SLAC à Standford et de l’anneau du
LHC au CERN

Comme application de cette relation on se propose de calculer la vitesse acquise
dans un champ électrique uniforme. On admettra que si le champ électrique ~E est
uniforme et si une particule chargée a une vitesse parallèle à ~E alors son accélération
dans le référentiel instantané est constante et vaut q ~E/m (où q est la charge de la
particule et m sa masse).
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a) Quelle est la vitesse acquise par l’électron à la sortie du tube dans le cas classique
et relativiste ?

b) Exprimer le facteur de boost en fonction de la différence de la différence de poten-
tiel électrique entre l’entrée de l’électron au repos et la sortie de l’électron accéléré.
Interpréter le résultat.

c) On s’intéresse à la collision d’un électron ainsi accéléré avec un positron au repos
dans le laboratoire. On appelle référentiel du centre de masse, le référentiel où la
somme des impulsions des deux particules est nulle P ′ = (E′/c,~0). Déterminer la
vitesse β de ce repère par rapport à celui du laboratoire.

d) Calculer l’énergie E′ totale avant collision dans le repère de centre de masse.
Exprimer cette énergie en fonction de l’énergie E initiale de l’électron accéléré.

e) Dans le tunnel du CERN, un anneau circulaire de 27 km de long, le LEP permet-
tait de faire tourner des faisceaux d’électrons et d’anti-électrons en sens inverse.
Le LHC permet maintenant d’y faire tourner des protons et des anti-protons. Cal-
culer l’énergie du système dans le référentiel du centre de masse. Pourquoi un tel
dispositif plutôt qu’un accélérateur linéaire ?

A donner ou pas - est-ce trop long ?

17.5.1. Effet Doppler-Fizeau

Les quanta de lumière sont représentés par les photons. Cette correspondance
onde–corpuscule est véhiculée par les relations de Planck (E = hν) et de de Bro-
glie ( ~p = ~eh/λ où ~e est un vecteur unité caractérisant la direction de propagation).

a) Déterminer la relation entre la fréquence ν et la longueur d’onde λ

b) En utilisant la loi de transformation du quadrivecteur énergie- impulsion pour les
particules de masse nulle, retrouver l’effet Doppler–Fizeau et l’aberration pour un
observateur O qui reçoit le signal lumineux émis par une source S en mouvement
par rapport à O, à vitesse ~VS .

c) Examiner les cas particuliers où l’émission a lieu (i) parallèlement (source s’éloi-
gnant ou se rapprochant) et (ii) perpendiculairement à la trajectoire de la source,
la notion de parallèle ou perpendiculaire se rapportant à l’observateur O (~e ‖ ou
⊥ ~VS , où ~e caractérise la direction de réception).

d) Quelles sont, dans les deux cas, les limites newtoniennes pour ces effets au premier
ordre en VS/c ?
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17.6. Calcul tensoriel

On considère la "métrique" de l’espace temps de Minkowsi, i.e. le tenseur deux fois
covariant, noté ηµν qui permet de calculer la "distance" infinitésimale ds entre deux
événements situés respectivement aux coordonnées xµ et xµ + ∆xµ. On a (on utilise
partout la convention de sommation d’Einstein) :

ds2 = ηµν∆xµ∆xν (11)

Dans un référentiel inertiel, on a

ηµν =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 (12)

où on considère µ comme un indice de ligne et ν comme un indice de colonne (dans
une notation matricielle). On considère ensuite la "métrique inverse" notée ηµν et qui
vérifie par définition

ηµνη
νρ = δρµ. (13)

Dans la suite, on souhaite démontrer divers résultats donnés lors de la PC3, sur la
métrique et la possibilité de faire "monter" ou "descendre" les indices. Dans cette
optique, on ne supposera pas connus ces résultats. On supposera uniquement connues
les lois de transformation des composantes d’un tenseur.

a) Expliquer pourquoi ηµν est un tenseur deux fois covariant. Montrer que, comme
le suggère la notation, ηµν est un tenseur deux fois contravariant.

b) Étant donné un vecteur uµ, on note uµ la quantitée définie par

uµ = ηµνu
ν (14)

Montrer que les uµ sont les composantes d’un covecteur (tenseur une fois cova-
riant). On dit ainsi que la métrique permet d’abaisser les indices et on note avec le
même symbole le vecteur et le covecteur que l’on a fabriqué comme indiqué avant.

c) On considère maintenant un covecteur vµ et on définit les quantités vµ par

vµ = ηµνvν (15)

Montrer que les vµ sont les composantes d’un vecteur (tenseur une fois contrava-
riant). On dit ainsi que la métrique permet de faire monter les indices.

d) Quel tenseur obtient-on quand on fait monter un indice de la métrique comme
ci-dessous. Même question si on fait descendre un indice de la métrique inverse ?
Justifier la notation ηµν pour la métrique inverse.
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e) On note ∂µ l’opérateur ∂/∂xµ. Montrer que l’action de cet opérateur sur un tenseur
p fois covariant et q fois contravariant T ν1···νq

µ1···µp permet de fabriquer un tenseur
p + 1 fois covariant et q fois contravariant dont les composantes seront notées
comme indiqué ci-dessous

∂µT
ν1···νq

µ1···µp := T
ν1···νq

µ1···µp ,µ (16)

f) On note ∂µ l’opérateur ηµν∂ν . Quel est la variance du tenseur

∂µT
ν1···νq

µ1···µp := T
ν1···νq ,µ

µ1···µp ? (17)

g) On considère le tenseur 4 fois covariant de composantes notées εµνρσ qui vérifie
(dans un certain référentiel inertiel)

εµσ(1)µσ(2)µσ(3)µσ(4) = ε(σ)εµ1µ2µ3µ4 (18)

pour toute permutation σ de signature ε(σ). Montrer que les composantes εµνρσ de
ce tenseur sont les mêmes dans tout référentiel inertiel. Cela reste-t-il vrai si on ne
demande pas que les transformations de Lorentz soient orthochrones et propres ?

17.7. Création de paires

On considère la réaction où deux particules donnent un photon

1 + 2→ γ (19)

a) Montrer que la réaction ci-dessus est impossible si les deux particules ne sont pas
de masse nulles. Conclure que la réaction est impossible.

b) Est-ce qu’un photon peut se désintégrer en deux particules ?

e−

e+

γ

Figure 2. – Création d’une pair électron-positron à partir d’un photon.

Le phénomène de création de pair γ → e−+ e+, fut observées pour la première fois
dans la chambre à brouillard de Patrick Blackett, ce qui lui valut le prix Nobel de
Physique en 1948.
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a) Montrer que pour que la réaction de la figure 2 soit permise par les contraintes
cinématiques il est nécessaire qu’elle implique au moins une troisième particule

b) Trouver la valeur de l’énergie minimale du photon pour que la réaction aie lieu

17.8. Collision élastique de deux protons

On considère deux protons, l’un (le proton 2), au repos dans un référentiel inertiel
R, a une énergie E0. Ce proton est heurté par un second proton (proton 1) d’énergie
cinétique xE0 dans R. On note R′ le référentiel du centre de masse du système. On
note α1 (respectivement α′) l’angle dans R (respectivement dans R′) entre la vitesse
du proton 1 après le choc et sa vitesse avant le choc. De même on note α2 l’angle dans
R entre la vitesse du proton 2 après le choc et la vitesse du proton 1 avant le choc.
On note θ l’angle (dans R) entre les vitesse des deux protons après le choc. Soit ~u la
vitesse du référentiel du centre de masse par rapport à R.

2.1 Montrer que l’énergie cinétique se conserve dans une collision élastique de deux
particules identiques.

2.2 Soit E′ l’énergie du proton incident mesurée dans R′ avant le choc. Exprimer
E′ en fonction de E0 et x et en déduire l’expression du facteur de Lorentz γ du
mouvement de R′ par rapport à R en fonction de x. Application : Calculer γ
et x pour le LHC où l’énergie E′ vaut 7 TeV (on prendra la masse du proton
égale a 1 GeV/c2). Comparer ce résultat aux énergies des rayons cosmiques
de "ultra-haute énergies" (1020 eV).

2.3 Montrer que dans R′ les particules conservent individuellement leur énergie et
la norme de leur 3-impulsion.

2.4 Donnez l’expression de l’angle θ en fonction des énergies cinétiques K1 et K2

dans R des deux protons après le choc.

2.5 Que devient cette formule dans la limite non relativiste ? Même question dans
la limite ultra-relativiste.

2.6 Exprimer K1, α1, K2 et α2 en fonction de α′ et γ, En déduire une expression
de θ en fonction de α′ et γ.

17.9. Effet Tcherenkov

Lorsqu’une particule chargée traverse un milieu transparent d’indice de réfraction
n tel que la vitesse de la lumière dans le milieu, c̃ = c/n soit inférieure à la vitesse v
de la particule, on constate la production de photons dans le milieu : q → q + γ∗.
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• Caractériser les photons γ∗ dans un milieu transparent : déterminer leur masse
carrée m2

γ∗ et leur vitesse vγ∗ en fonction de la fréquence ν et de l’indice n du
milieu 1. Que vaut le produit c̃vγ∗ ?

• On se place dans le référentiel du laboratoire, où le milieu matériel transparent
est au repos.

– Partant des lois de conservation de l’énergie et de l’impulsion dans le milieu
d’indice n, déterminer l’angle maximum d’émission du photon Tcherenkov
par rapport à la direction d’incidence de la particule chargée, θmax, en
fonction de l’énergie E de la particule incidente, de sa masse m et de n,
ou, de manière équivalente, en fonction de c̃ et de ve (vitesse de la particule
incidente).

– Sous quel angle sont émis les photons Tcherenkov les plus énergétiques ?
Quelle est leur énergie en fonction de E, ve et c̃ ?

– A quelle énergie seuil de la particule chargée, Emin, l’effet Tcherenkov
apparaît-il ? Que vaut θmax à cette énergie ? Que vaut cet angle à la li-
mite d’énergie infinie ?

– Comment utiliser l’effet Tcherenkov pour mesurer l’énergie des particules
chargées ?

On considère l’effet Tcherenkov produit par des électrons (me = 0, 51MeV/c2)
traversant l’eau (n ≈ 4/3). Déterminer l’énergie minimum de l’électron incident pour
produire un photon Tcherenkov.

17.10. Mouvement dans un potentiel central

Dans une base cartésienne, les composantes du vecteur moment cinétique ~̀= ~r× ~p
sont 


`x
`y
`z


 =



ypz − zpy
zpx − xpz
xpy − ypx


 . (20)

où px, py et pz sont les moments canoniquement conjugués aux variables 2 x, y et z.

a) Vérifier que {`x, `y} = `z et
{
`i, ~̀

2
}

= 0, pour tout i ∈ {x, y, z}.

On montre aisément que {`x, `y} = `z et
{
`x, ~̀

2
}

=
{
`y, ~̀

2
}

=
{
`i, ~̀

2
}

= 0, ∀i.
En l’absence de champ magnétique, ~p = m~̇x est la quantité de mouvement.

1. Rappel : Eγ∗ = hν, pγ∗ = h/λ et λν = c̃.
2. Noter que px, py et pz ne s’identifient pas nécessairement aux moments généralisés adoptés

pour étudier le problème. Ces derniers sont canoniquement conjugués aux coordonnées généralisées
choisies qui ne sont pas forcément des coordonnées cartésiennes.
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On définit les coordonnées sphériques au moyen des relations suivantes :

x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ. (21)

Dans la suite, on adoptera ce système de coordonnées.

b) Écrire la fonction de Lagrange décrivant le mouvement d’un corps de masse m
dans un champ de force dérivant d’un potentiel à symétrie sphérique. Déterminer
les moments généralisés et déduire la fonction d’Hamilton.

c) Exprimer `x, `y, `z ainsi que ~̀2 en fonction des variables d’état r, ϑ, ϕ et pr, pϑ, pϕ.

d) Montrer que {`x, `y} = `z et
{
`x, ~̀

2
}

=
{
`y, ~̀

2
}

=
{
`z, ~̀

2
}

= 0.

e) Des relations
{
`i, ~̀

2
}

= 0, déduire que {`x, H} = {`y, H} = {`i,H} =
{
~̀2,H

}
=

0, pour tout i ∈ {x, y, z}. Cette propriété reflète l’invariance par rotation et la
conservation du moment cinétique.

f) Dans le cas où la symétrie par rotation serait brisée, combien de composantes du
moment cinétique pourraient satisfaire {`i, H} = 0 ?

L’analyse qui précède permet de tirer des conclusions déterminantes sur la nature
de la trajectoire d’un corps dans un potentiel central :

d) Sans autre développement technique, montrer que la trajectoire est toujours située
dans un plan qui passe par l’origine, centre du champ de force.

e) Montrer que le problème se réduit la dynamique d’un particule à une dimension
dans un potentiel effectif que l’on interprétera.

f) Peut-on effectuer une transformation canonique telle que `x, `y et `z soient les
variables de moment dans l’espace des phases ?

Adoptons pr, `z et ` =
∥∥~̀∥∥ pour moments généralisés. Les coordonnées canoniquement

conjuguées seront r, χ et ψ.

i) Par transformation de Legendre, déterminer la fonction de Lagrange et interpréter
les nouvelles coordonnées χ et ψ. Quel est le rôle du moment `z ?

j) Démontrer la seconde loi de Kepler – conservation de la vitesse aréolaire.

Le problème est finalement réduit à deux dimensions.

k) Trouver une nouvelle intégrale première et intégrer les équations par quadratures.

l) Identifier un potentiel de force effectif et interpréter ses différents termes.

m) Décrire qualitativement l’extension des trajectoires dans la direction radiale, en
particulier si V = −k/r (problème de Coulomb ou problème de Kepler).
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17.11. Le paradoxe de la perche et du hangar

Un étudiant est perplexe et écrit « La relativité doit être fausse. Considérons un
perche de 20 mètres de long transportée si rapidement dans la direction qui lui est
parallèle qu’elle ne parait plus avoir que 10 mètres de long dans le système du la-
boratoire. À un moment donné, on peut donc la faire entrer toute entière dans un
hangar de 10 mètres de long. Plaçons-nous cependant dans le système de référence
du coureur qui la porte. Pour lui, le hangar est contracté à la moitié de sa longueur.
Comment un perche de 20 mètres pourrait-elle entrer dans un hangar de 5 mètres ? Et
cette conclusion impossible à retenir ne démontre-t-elle pas que la relativité renferme
quelque part une faille logique fondamentale ? ».
Expliquer clairement et en détails comment faire entrer la perche et le hangar dans

la théorie de la relativité sans qu’il en résulte de contradiction.
Pour cela on tracera les diagrammes d’espace-temps pour le porteur et pour le

hangar.

17.11.1. Solution

Le facteur de contraction de Lorentz est de 2, γ = 2 = 1/
√

1− β2
r . Donc la vitesse

relative entre les 2 référentiels est de βr =
√

3/2. On peut donc tracer les diagrammes
d’espace-temps suivants

On résout donc ce paradoxe de la manière suivante : dans le référentiel du porteur,
l’avant de la perche quitte le hangar avant que l’arrière n’entre dans le hangar. Ainsi
le porteur n’observe jamais que la perche est contenu dans le hangar.

17.12. Objets de déplaçant plus vite que la lumière

faire le dessin de la regle
Les équations de transformations de Lorentz n’ont plus aucune signification si la

vitesse relative des deux systèmes de référence est supérieure à celle de la lumière.
Ceci implique que la masse, l’énergie et l’information ne peuvent être transmises d’un
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endroit à l’autre plus vite que la vitesse de la lumière. Vérifier cette implication pour
les exemples suivants.

a) Le paradoxe des ciseaux. Une très longue baguette droite fait une angle Φ avec
l’axe Ox et se déplace vers le bas à une vitesse uniforme βy. Trouver la vitesse du
point d’intersection du bord inférieur de la baguette avec l’axe Ox. Peut-elle être
supérieure à la vitesse de la lumière ? Peut-elle servir à transmettre un message de
l’origine à un point éloigné de l’axe Ox.

b) Admettons que la même baguette soit initialement au repos et que le point d’in-
tersection A soit confondu avec l’origine. On frappe la zone de la baguette qui est
voisine de l’origine avec un marteau qui va de haut en bas. Le point d’intersec-
tion se déplace vers la droite. Peut-on utiliser ce mouvement pour transmettre un
message à une vitesse supérieure à celle de la lumière ?

c) On fait tourner rapidement un projecteur très puissant de telle façon que son
faisceau décrive un plan. Les observateur A et B sont placés dans ce plan et à la
même distance du projecteur, mais relativement éloignés l’un de l’autre. À quelle
distance du projecteur doivent se trouver A et B pour que le faisceau balaye le
plan de A vers B plus vite qu’un signal lumineux émis et reçu entre les deux
mêmes points ? Avant de gagner leurs positions, les deux observateurs ont reçu les
instructions suivantes :

i) Pour A : Quand vous verrez le faisceau du projecteur, tirez un balle en direc-
tion de B

ii) Pour B : Quand vous verrez le faisceau lumineux, plongez parce que A vous
aura tiré dessus.

Dans ces conditions, l’alarme ne passera-t-elle pas de A à B plus vite que la
lumière ?

d) Les constructeurs de certains oscilloscopes prétendent enregistrer des vitesses su-
périeures à celle de la lumière. Est-ce possible ?

17.12.1. Correction

a) Quand la règle bouge d’une distance ∆y = βy ∆t, le point A bouge d’une distance
∆x = ∆y/ tan Φ = βy ∆t/ tan Φ. La vitesse du point d’intersection A est donc
βA = ∆x/∆t = βy/ tan Φ. Pour toutes valeurs de βy on peut toujours choisir Φ
suffisamment faible pour que βA > 1 donc que A bouge plus vite que la vitesse de
la lumière. Mais ce point ne contient pas d’information physique, pas plus qu’un
message est échangé par deux horloges programmées pour sonner à un intervalle de
temps tel que la lumière ne peut voyager entre ces deux horloges. Dans l’exemple
décrit ici, la règle doit être accélérée pendant une période de temps très longue
pour atteindre la vitesse voulue. Et l’observateur à l’origine n’a pas la possibilité
de transmettre de l’information sur l’axe Ox.
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b) Dans ce cas le point d’intersection peut bouger vers la droite à une vitesse inférieure
ou égale à la vitesse du son dans la règle. C’est une vitesse très inférieure à celle
de la lumière.

c) Soit ω la vitesse angulaire, exprimée en radians par seconde, du projecteur. Pour
que le faisceau aille plus vite de la lumière il faut que

ωr > c

L’alarme n’a pas pu aller de A vers B, car on peut pas transmettre de signal plus
vite que la vitesse de la lumière.

d) Oui, il est possible de mesurer des vitesses supérieures à celles de la lumière comme
pour le cas du faisceau du projecteur.

17.12.2. Contexte physique

Des exemple de propagation apparente plus vite que la vitesse de la lumière sont
observables en astrophysique avec les jets de matière émis par les galaxie.

Par exemple voici les images prises par le télescope Hubble de la propagation du
jet émit par la galaxie M87 observé sur plusieurs années.
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