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1. PC 1 : Transformations de Lorentz

Relativité restreinte (PHY 431)
Pierre Vanhove
PC du 4 novembre 2014

1.1. Rappel de cours

Le postulat de la constance de la vitesse de la lumiére ¢ permet de construire la loi
de transformation entre les coordonnées de deux référentiels R et R’ en mouvement
relatif.

5, "

/
z z

FIGURE 1. — référentiels en mouvement relatif.

Si on note (t,x,y,2) et (t',2',y/,2") les coordonnées d’un événement dans chacun
de ces référentiels de telle sorte que I’événement de coordonnées (0,0,0,0) coincide
dans les deux référentiels. Si le référentiel R’ se déplace par rapport a R avec la
vitesse réduite 3 le long de I'axe O, selon le schéma [1} alors les coordonnées dans R/
s’obtiennent par ’application de la transformation de Lorentz spéciale :

' = ry(ct—px),

o = y(=Bct+a),

y o=y (1)
Z/ = Z

)
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1. PC 1 : Transformations de Lorentz

avec v le facteur de boost de Lorentz
1 v
"= Pt

Cette transformation prend la forme matricielle suivante

ct’ ct v =8 0 0
| -8 ~ 00
s | = A(v) ; avec A(v) = 0 0 1 0 (3)
2 z 0 0 01
Alors
det A(v) =1 (4)
La transformation inverse est alors
v 8 0 0
_ |y 00 _
0O 0 01

Plus généralement, les transformations spéciales de Lorentz forment un groupe a un
parameétre. Elles sont représentées par des matrices unimodulaires A € SO(1, 3).

1.1.1. Contexte historique

En 2012 nous avons commémoré le centenaire de la mort d’Henri Poincaré (1854-
1912, X1873). Henri Poincaré a contribué au développement de la théorie de la re-
lativité restreinte. Max Born indique que la théorie de la relativité « a résulté des
efforts communs d’un groupe de chercheurs exceptionnels : Lorentz, Poincaré, Ein-
stein, Minkowski ». Wolfgang Pauli dit aussi « Both Einstein and Poincaré, took their
stand on the preparatory work of H. A. Lorentz, who had already come quite close to
the result, without however quite reaching it. In the agreement between the results of
the methods followed independently of each other by Einstein and Poincaré I discern
a deeper significance of a harmony between the mathematical method and analysis
by means of conceptual experiments (Gedankenexperimente), which rests on general
features of physical experience. »

1.2. Le probleme d’Einstein

Quand Einstein était enfant, il se posa la question suivante : un coureur se regarde
dans un miroir qu’il tient & bout de bras devant lui. S’il court a une vitesse proche
de la vitesse de lumiére, pourra-t-il se voir? Etudier cette question dans le cadre
relativiste.

12



1.3. Contraction des longueurs et dilatation du temps

1.3. Contraction des longueurs et dilatation du temps

moOSPHERE
aT?
AN

NOYAU D'ATOME VENU DE L'ESPACE

SYSTEME DE
TELECOMMUNICATION
ET GPS

PANNEAUX SOLAIRES

\

RTICULES
T ONDAIRES
CAPTEUR
« CEIL DE MOUCHE »

.l \

ERBE DE

1\\

12 TONNES D'EAU TRES PURE DETEGTEURS
DE CERENKOV

FIGURE 2. — Schéma de I’Observatoire Pierre Auger installé en Argentine et aux états-
unis au Colorado

1.3.1. Exercice

A une altitude inférieure a 35 000 m, les muons ont une énergie originelle moyenne
de 6 GeV.

a) Quelle est la vitesse initiale des muons d’une masse m,, ~ 100 MeV/c?? (1 GeV=
109 électron-volts, et 1 MeV= 10° électron-volts, 1 électron-volt= 1.602 10
Joules = 1.78310 30 kg ¢2, ¢ = 299792458m//s.)

b) Avec une durée de vie de 79 ~ 2.2107%s quelle est la distance maximale parcourue
dans le cadre de la cinématique Galiléenne ?

c¢) Dans le référentiel du détecteur, quelle est leur durée de vie?
d) Quelle est la distance parcourue par le muon dans le référentiel du détecteur ?

e) Quelle est I'interprétation de ces résultats du point de vue du muon ?

1.3.2. Contexte historique et expérimental

Les rayons cosmiques, particules chargées trés énergétiques, interagissent avec ’air
présent dans la haute atmosphére. Il y a alors formation de particules, comme des

13



1. PC 1 : Transformations de Lorentz

pions qui se désintégrent en muons et neutrinos 7~ — p~ + 7,. Les pions ont une
durée de vie faible de 'ordre de la nanoseconde. La désintégration se produit dans la
haute atmosphére & une altitude de quelques dizaines de kilométres.

Les muons ont la méme charge que celle de I'électron, ils sont environ 200 fois
plus lourd avec une masse de m,, ~ 105.66 MeV/c? (avec ¢ = 299792458 m/s). Leur
durée de vie est de 79 = 2.19710 %s. Ils sont sensible aux interactions faibles mais
pas aux interactions fortes. Ceux sont les particules chargées les plus nombreuses au
niveau de la mer. Comme toute particule chargée, les muons perdent de I’énergie par
ionisation mais interagissent trés peu avec la matiére. D’une énergie originelle de 6
GeV les muons ont une énergie d’environ 4 GeV au niveau de la mer. Les muons
furent découverts par Carl David Anderson (Nobel 1936) et Seth Neddermeyer en
1936, alors qu’ils travaillaient sur les rayons cosmiques.

La détection des muons cosmiques confirme la théorie de la relativité restreinte, car
dans le cadre de la cinématique Galiléenne un muon ne devrait jamais étre observé
au niveau du sol.

Avec votre téléphone portable vous pouvez participer a la détection de
rayons cosmiques en utilisant D’application DECO disponible a cette adresse
http://wipac.wisc.edu/deco

1.4. Simultanéité

/
A ct ‘Ct '/,/
. /
CtE ...........,'.' .............. ) .,:‘E’/'/
P o/
' ‘ /
! R
'l "',' '/ :, :
0" , / N :
:' CtE /'/ ': s
CE,' ya /
N '/ ':' é e ° 'x
] 7 Poaiet
. Lt
.'/“/. .- 'd -'L'E
- - \ 7
O TE T

FIGURE 3. — Diagramme de Minkowski

On veut montrer qu'une transformation de Lorentz peut étre visualisée par un
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1.5. Causalité

diagramme d’espace-temps, ou diagramme de Minkowski,lﬂ représenté en figure

Soit un référentiel R’ se déplagant & une vitesse réduite 3 par rapport un référentiel
R, selon la figure [1]

a) Montrer que le diagramme de la figure |3| correspond bien a la représentation
des axes (Oz/,0t') dans le référentiel (Oz, Ot) aprés transformation de Lorentz.
Quelles sont les pentes des nouveaux axes? Quelle est l'interprétation géomé-
trique ?

b) Identifier la trajectoire des rayons lumineux sur le diagramme. Vérifiez que ’équa-
tion définissant la trajectoire des rayons lumineux est invariante sous transforma-
tion de Lorentz.

c¢) Quelles sont les lignes de simultanéité dans chacun des référentiels ?

d) Montrez que les transformations de Lorentz ne préservent pas la chronologie des
événements. (La causalité est bien str préservée.)

Le diagramme de Minkowski ne traite pas symétriquement les deux référentiels R et
R’, et les unités de longueur sur les axes des deux diagrammes ne sont pas identiques.
Ce probléme est dii & une représentation euclidienne d’une géométrie hyperbolique.
Nous allons voir comment palier & ces défauts.

e) Montrez que l'unité de longueur de diagramme R et reliés a celle du diagramme
R’ par le facteur d’échelle

(6)

f) En déduire par une construction graphique la relation de dilatation des durées
entre les deux référentiels.

1.5. Causalité

1.5.1. Exercice

Le diagramme de la figure [ représente les cones de lumiére passé et futur d’un
observateur situé a l'origine.

a) Vérifier 'interprétation de ces cones en montrant (graphiquement) que tout évé-
nement dans le futur (ou le passé) de 'observateur situé a ’origine sont contenus
dans les cones.

1. Ces diagrammes ont été introduits par Hermann Minkowski en 1908. Hermann Minkowski
(1864 - 1909) est un mathématicien allemand. Il enseigna & Albert Einstein lors de la scolarité de
celui-ci & ’'Ecole Polytechnique Fédérale de Ziirich entre 1896 et 1900.

15



1. PC 1 : Transformations de Lorentz

ct

présent

pasgsé

FIGURE 4. — Diagramme de causalité représentant les cones de lumiéres passé et futur
d’un observateur situé a l’origine.

Un tachyon est une particule hypothétique qui peut se déplacer plus vite que la
vitesse de la lumiére.

b) En utilisant la formule pour I'énergie E = ymc?, conclure que la masse au repos
d’un tachyon est imaginaire.

On considére maintenant un observateur R’ évoluant a une vitesse réduite ' < 1
selon 'axe (Oz) du référentiel du laboratoire R. Aprés un temps ¢/, il émet un signal a
une vitesse réduite 3. Dés réception du signal un observateur fixe attaché au référentiel
R émet un signal a une vitesse réduite S vers R’. On supposera que l'origine du
référentiel R correspond au moment de réception du signal.

c) Déterminer le temps de réception treception du signal de réponse dans le référentiel
Rl

d) Etudiez le comportement du temps de réception en fonction des vitesses § du
signal et de la vitesse 8’ de 'observateur en mouvement.

i) Que se passe-t-il pour un signal avec une vitesse inférieure a celles de la lumiére
B<1?

ii) Que se passe-t-il pour un signal évoluant a la vitesse de la lumiére g =17

iii) Que se passe-t-il dans le cas d’un signal tachyonique avec 5 > 1. Montrer qu'il
existe une configuration des vitesses § et ' telle que treception < 0. Quelle est
I'interprétation de ce résultat ?

1.5.2. Contexte physique

La propagation de particules & des vitesses supérieures a celle de la lumiére n’est pas
interdite par le formalisme mathématique. La causalité est une hypothése physique
qui doit étre imposée.

16



1.5. Causalité

La théorie impose que tout signal physique se propage & une vitesse inférieure au
paramétre limite ¢ qui peut différer de la vitesse de la lumiére dans un milieu différent
du vide. Par exemple I’effet Tcherenkov responsable de la couleur bleu des piscines des
réacteurs nucléaires est due & un flash de lumiére provoqué par une particule chargée
se déplagant dans un milieu avec une vitesse supérieure a la vitesse de la lumiére dans
ce milieu, mais avec une vitesse inférieure & c.

Depuis 1983, la vitesse de la lumiére est fizée a la valeur ¢ = 299 792 458m/s par
le Bureau international des poids et mesures. L’unité de métre est obtenue & partir
de la mesure de la seconde et la vitesse de la lumiére. Grace aux progrés en physique
atomique, la seconde est définie comme « la durée de 9 192 631 770 périodes de la
radiation correspondar%t a la transition entre les niveaux hyperfins F' =3 et F' =4 de
I’état fondamental 652 de 'atome de césium 133 ». Ceci permet une détermination
de l'unité de longueur plus précise qu’avec un métre étalon dont la longueur varie
selon les conditions extérieures.

17
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2. PC 2 : Composition des vitesses et
aberration relativiste

Relativité restreinte (PHY 431)
Pierre Vanhove
PC du 18 novembre 2014

2.1. Rappel de cours

On considére un référentiel R’ se déplacant avec une vitesse uniforme v = Ec
par rapport & un autre référentiel R. Le vecteur position 7 peut étre décomposé
en composantes paralléle & E, T = (7 - 5) B / 52 et une composante orthogonale
7 =7 — 7. Cette décomposition donne implicitement un choix d’axe de telle sorte
que la transformation de Lorentz s’écrit maintenant

(—”)
(=

ctl =
7=
[ —

—

Bet + 7)) (1)

L 22

=/
r, =

<

1 -

Si le mouvement se fait selon 'axe (Oz) la transformation de Lorentz prend la forme
matricielle

ct! cosh¢(v) —sinh¢(v) 0 0 ct

' | | —sinh¢(v) cosh¢(v) 0 0 x @)
v | = 0 0 1 o] |yl

4 0 0 0 1 z

avec la rapidité ¢(f) donnée par
1

Nyl

2.2. Composition des vitesses

cosh () =~(8) = sinh¢(8) =v(8) B;  tanho(B) =5.  (3)

On considére deux référentiels R et R’ en mouvement uniforme relatif a la vitesse
URi /R = CBR/ /R~ Soit un mobile M en mouvement avec une vitesse Upq/r = cg MR
arbitraire par rapport au référentiel R’. On suppose que les axes de R’ sont paralléles
a ceux de R.

a) On suppose que le mouvement du référentiel R’ se fait selon 'axe (Oz) du référen-
tiel R. Donnez I'expression de la vitesse U/ = ¢ /g du mobile par rapport
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2. PC 2 : Composition des vitesses et aberration relativiste

au référentiel R.

b) La rapidité ¢(vgs r) est définie par tanh ¢(vr//r) = Br//r = vr//R/C-
Montrer que la rapidité est additive par composition des vitesses.

c) Exprimer le facteur kr/ /g = \/ (1+ Brryr)/(1 = Brryr) de leffet Doppler relati-

viste en fonction de la rapidité. En déduire le comportement de k sous la compo-
sition des vitesses.

d) Généraliser au cas ou la vitesse relative des deux référentiels est arbitraire.

e) Vérifier que si le mobile M se déplace a la vitesse de la lumiére par rapport R’
alors il se déplace aussi a la vitesse de la lumiére par rapport a ‘R.

2.3. Effet d’aberration relativiste

2.3.1. Effet torche

L’effet torche est un effet d’aberration des rayons lumineux conséquence curieuse
de la relativité restreinte. L’image d’'un objet est déformée par suite du mouvement
de l'observateur.

Un observateur O situé a l'origine du référentiel R voit une source (supposée ponc-
tuelle) se déplacer a la vitesse v = ¢ 3 le long de (Ox). La source rayonne uniformément
dans son référentiel propre.

a) Si Pobservateur O regoit les rayons lumineux sous un angle 6 par rapport a I'axe
(Oz). Déterminer I'expression 'angle 6 en fonction de 'angle 6" dans le repére en
mouvement de la source.

b) Considérer les limites Galiléenne v/c < 1, et ultra-relativistes v/c g 1.

2.4. Le paradox du meétre incliné

FIGURE 1. — A gauche la régle est dans le référentiel du laboratoire. A droite la régle
est dans le référentiel du mobile.
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2.5. Effet Doppler : Un conducteur relativiste

Une régle de 1 métre de long paralléle a 'axe (Ox) se déplace dans la direction de
I'axe (Oy) du systéme du laboratoire a la vitesse 5Y. On considére un mobile évoluant
a la vitesse 8 selon I'axe (Ox) (voir figure . Dans le systéme du mobile, la rége est
inclinée vers le haut par rapport a la partie positive de 'axe (Oz').

a) Expliquer ce phénoméne sans écrire d’équations. On admettra que le centre de la
régle passe au point x =y =2’ =3 =0 a l'instant t = ¢ = 0.

b) Calculer I'angle d’inclinaison ¢’ du métre sur Paxe (Oz’) du référentiel du mobile

On considére maintenant que cette régle glisse le long de I'axe (Ox) du systéme
du laboratoire et se rapproche de l'origine a la vitesse 3. Une plaque trés mince et
paralléle au plan (xOz) du systéme du laboratoire se déplace vers le haut dans le
sens de 'axe (Oy) a la vitesse Y. Elle est percée d'un trou circulaire d’un métre de
diameétre centré sur 'axe (Oy). Le centre de la régle se trouve a l'origine du systéme du
laboratoire au moment méme, mesuré dans le méme systéme, ot la plaque ascendante
se trouve a y = 0.

Comme le métre subit une contraction de Lorentz dans le systéme du laboratoire,
il passera facilement au travers de 'ouverture de la plaque. Il n’y aura donc aucune
collision entre eux et ils poursuivront leurs mouvements respectifs.

Mais le systéme du mobile ou il se trouve au repos, le métre ne subit aucune
contraction et c’est au contraire le trou de la plaque qui subit une contraction de
Lorentz. Le métre qui a toute sa longueur ne pourra donc pas passer au travers du
trou de la plaque qui s’est contracté. Il devrait se produire une collision.

¢) Résoudre se paradoxe en expliquant si il y aura collision ou pas.

2.5. Effet Doppler : Un conducteur relativiste

Une anecdote apocryphe raconte 1’histoire d’un physicien arrété pour ne pas avoir
respecté un feu rouge. Pour éviter de payer une amende le physicien explique que le
feu lui est apparu de couleur verte & cause de I'effet Doppler. Aprés réflexion le policier
déchira la contravention pour non respect d’un feu rouge en une contravention pour
excés de vitesse.
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2. PC 2 : Composition des vitesses et aberration relativiste

a) A quelle vitesse devait conduire le physicien pour que le feu rouge lui apparaisse
vert ? La longueur d’onde d’une lumiére rouge Arouge ~ 700 nm et d’une lumiére
verte Ayert ~ 546 nm (rappel 1nm= 10"%m et ¢ = 299792458m/s).

2.6. Contexte physique : Aberration stellaire

Sl

g g ’ I
K= Y 2=
1-%1& e

Les effets d’aberration relativiste ont été calculés par Einstein en 1905

pour la premiére fois dans son article « Zur Elektrodynamik beweg-

ter Korper », publié dans Annalen der Physik, vol. 17, 30 juin 1905,

p- 891-921. Le texte intégral en allemand est accessible & D'adresse
http://www.physik.uni-augsburg.de/annalen/history/einstein-papers/1905_17_891-921.pdf.
Une traduction en anglais est accessible a cette adresse
http://www.fourmilab.ch/etexts/einstein/specrel/specrel.pdf.

Une conséquence intéressante de la formule d’aberration est le mouvement apparent
des étoiles dans le ciel avec une période de six mois. Cet effet n’est pas due a la
différence de position de la Terre par rapport aux étoiles, car la taille de 'orbite
terrestre est négligeable en comparaison a la distance aux étoiles, mais c’est un effet
de relativité restreinte due au mouvement de la Terre autour du Soleil. Bien siir dans
le cas du mouvement de la Terre autour du Soleil, le vitesse est de l'ordre de 30 km/s
et l'effet est purement non-relativiste.
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3. PC 3 : Principes variationnels,
équations d'Euler- Lagrange

Relativité restreinte (PHY 431)
Pierre Vanhove
PC du 25 novembre 2014

3.1. Rappel de cours

Un systéme de mécanique classique est caractérisé par une configuration ¢ évoluant
dans un espace C.

Par exemple, si le systéme décrit des particules macroscopiques, une configuration
est un vecteur ¢ = (q1, - ,qm) qui décrit 'état du systéme. Par exemple, pour
deux points matériels évoluant dans I’espace R? la configuration est donnée par les
coordonnées des deux points matériels ¢ = (1, y1, 21, T2, Y2, 22) € C = R3 x R3. Pour
une particule contrainte a évoluer sur une sphére S? de rayon z? + 3 = R? alors
qd= (.%'1,.%'2) =L

Sous l'effet de forces, le systéme évolue dans l'espace des configurations C. C’est
alors un systéme dynamique.

On considére un systéme dont le comportement peut étre décrit par la trajectoire
q(s) ot ¢;(s) sont des coordonnées généralisées et s un paramétre curviligne. On note
7:=dq, /ds les vitesses généralisées. La fonction de Lagrange L (si elle existe) est une
fonction indépendante des coordonnées et des vitesses généralisées, L({, cj’, s).

Le principe de moindre action stipule que lorque le systéme suit les équations du

mouvement, 1’action
fin

S = ds L, 7, s) (1)
début

est stationnaire vis-a-vis de toute variation de la trajectoire d¢(s) qui ne change pas
les points de départ et de fin de la trajectoire.

Les équations du mouvement sont obtenues de la maniére suivante : on définit le
moment généralisé (ou encore appelé moment conjugué) de la variable ¢ par

P
-2

En composantes cette équation s’écrit

(2)

i 0L

23



3. PC 3 : Principes variationnels, équations d’Euler- Lagrange

La donnée du vecteur configuration ¢ et de son moment conjugué p fournit I'espace
des phases.
Les équations du mouvement s’écrivent alors

a_d (o£) _oc "
ds ds \og) 0Oq

ol le terme de gauche doit étre compris comme une dérivée totale par rapport au
paramétre s. Ce sont les équations d’Euler-Lagrange.
La quantité

i OL

= B (5)

est appelée la force généralisée.

3.1.1. Multiplicateurs de Lagrange (constraintes globales)

Quand on doit faire une minimisation sous contraintes globales

Cj(q(s),q(s)) = 0 (6)

on peut introduire un multiplicateur de Lagrange A; par contrainte, de telle sorte que
le Lagrangien prenne la forme,

L(q(s),d(5), A7) = Lo(d(s),d(s)) + Y Aj Ci(d(s), a(s)) (7)
i

ou Ly est le Lagrangien sans contrainte.

La solution du probléme de minimisation est obtenue en écrivant les équation
d’Euler-Lagrange pour tout \;. Les valeurs de ces paramétres auxiliaires sont dé-
terminés a la fin en résolvant les constraintes C;(q(s), q(s)) = 0.

3.2. Quelques systémes simples

3.2.1. Le pendule mobile

On considére un pendule de longueur [ et de masse mo suspendu & un point de
masse m; qui se déplace horizontalement sur un rail (sans frottement). On note x
I’abscisse de m; et ¢ I'angle du pendule avec la verticale. Ecrire le lagrangien de ce
systéme.

3.2.2. Exemple du référentiel tournant

Le formalisme lagrangien permet d’aborder de fagon élégante et efficace de nom-
breux problémes d’optimisation et de mécanique analytique. Par exemple, le mou-
vement d’un objet ponctuel, libre, dans un repére tournant & vitesse angulaire €2
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3.3. Temps propre et équations de Euler-Lagrange

constante. Le lagrangien est donné parlﬂ

N IR 2
L= wmi (Gx7)+ 2 (A7), (8)
conduisant aux moments et forces généralisés suivants :
oL =
§ o= %:m(ﬁqLQxF) 9)
. or . . .
F o= ?:m(ﬁxf)xﬁ—i—mﬁxﬁ. (10)
g

La force généralisée est la somme de la contributions de la force centrifuge F. =
m (ﬁ X F) x Q0 et la moitié de la Coriolis ﬁc = 2md x Q.

Les équation du mouvement étant dp/dt = F' la force de Coriolis provient a parts
égales de p'et de F'. Souvent, les forces d’inertie se manifestent invariablement au tra-
vers des moments ou des forces généralisés, selon les coordonnées généralisées adop-
tées.

3.3. Temps propre et équations de Euler-Lagrange

On veut montrer que le mouvement rectiligne-uniforme entre deux événements A
et B rend extremum le temps propre écoulé entre ces deux événements. Pour cela on
considére ’action géodésique suivante

sp
S:/ Nuwat " ds, (11)

A

avec ¢ := dzt/ds et ou s est un paramétre le long de la courbe.

a) Ecrire les équations d’Euler-Lagrange et en déduire le résultat cherché.
b) Sachant que le temps propre d’une particule est
(cdr)? = (cdt)? — (dF)? (12)

obtenir le méme résultat en calculant I'extrémum du temps propre intégré entre
I'instant initial et final.

1. Si le référentiel R’ est en rotation selon I'axe Oz par rapport au référentiel R alors O=0q¢.
et 7 = (z cos(t) +ysin(Qt)) € + (—z sin(Qt) +y cos(Qt)) €, + 2 .. Donc si T = dr’ /dt est la vitesse
dans le référentiel R’ alors la vitesse par rapport au référentiel R est V = 5+7x (1. Donc le lagrangien
de la particule libre en mouvement dans un référentiel en rotation est obtenue en substituant dans
le lagrangien £ = mTVZ I’expression pour la vitesse V.
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3. PC 3 : Principes variationnels, équations d’Euler- Lagrange

3.4. Formule de Beltrami

On considére une fonctionelle de la forme
1
uty) = [ Fly(a). o). o (13)

ou y est une fonction de x et § := dy/dx. On cherche les configurations y(z) qui
rendent cette fonctionnelle extrémale, zg et x1 étant fixées.

a) En étudiant la condition d’extrémalisation de cette fonctionelle déduire les équa-
tions d’Euler-Lagrange.

b) On suppose que F ne dépend pas explicitement de z (i.e. telle que OF/0z = 0),

montrer que la quantité
E = ,OF F (14)
= 9
est constante pour toute solution y du probléme d’extrémalisation (formule de
Beltrami).

¢) On considére une particule ponctuelle en mouvement unidimensionel dans un po-
tentiel V(x) indépendant du temps. Ecrire le Lagrangien pour ce systéme et la
formule de Beltrami. Interpréter le résultat.

3.5. Brachistochrone

08F Y,

o6 \

F1GURE 1. — Courbe brachistochrone, du grec « brakhisto » signifiant « le plus court »
et de « chronos » signifiant le temps.

On suppose qu’'un objet ponctuel P, laché du point A de coordonnées (x4 = 0,24 =
h > 0) sans vitesse initiale, glisse le long d’un toboggan jusqu’au point B de coor-

données (xp =d > 0,zp = 0) (voir la figure [1)).

a) Déterminer le temps de parcours T'(z) comme fonctionnelle de la courbe z(z) du
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3.6. Caténoide

toboggan ;
T(z) = /O f(z, ) dx, (15)

avec Z := dz/dx. Pour cela on utilisera la théoréme de conservation de 1'énergie
du systéme.

b) Appliquer la formule de Beltrami pour déterminer la forme de la courbe. Pour cela
poser z := dz/dx = tan(f/2). On obtient un arc de cycloide.

¢) On place une particule en un point quelconque de la courbe trouvée et on la lache
sans vitesse initiale. Montrer que le temps mis pour atteindre le point le plus bas
de la courbe est indépendant du point de départ. On dit que la courbe trouvée est
tautochrone.

3.6. Caténoide

FIGURE 2. — Forme d’une bulle de savon entre deux cercles. La forme prise par la
bulle est une caténoide du latin Catena pour chaine.

On recherche la forme d’une bulle de savon tendue entre deux cercles de rayon R
placés 'un au dessus de l'autre (voir Fig. . A cause de la tension superficielle la
forme prise par la bulle est telle que la surface totale est minimale.

a) Montrer que 'action de ce systéme peut s’écrire,

h
S = 27T/h7‘(2)\/1 +7(2)%dz, (16)

ou 7(z) 1= dr(z)/dz.

b) Ecrire I’équation d’Euler-Lagrange correspondante. Remarquer que 7(z)/(1 +
72(2))"/? est conservée.
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3. PC 3 : Principes variationnels, équations d’Euler- Lagrange

¢) Montrez que la solution est donnée par r = « cosh((z — )/v) ou 'on déterminera
les constantes «a, 5 et v en fonction des données du probléme.

3.7. Contexte historique

En juin 1696 Bernoulli a mis au défi les mathématiciens européens de résoudre
le probléme de la brachistochrone. Il accorda un délai de six mois pour recevoir la
solution, et promis de publier sa propre solution si aucune solution ne lui est commu-
niqué. Le délai des six mois écoulés sans solutions recues, Bernoulli regu une lettre de
Leibniz indiquant étre proche d’une solution et demandant un délai supplémentaire
jusqu’a Noél, afin que les mathématiciens francais et italiens, informés plus tard, ne
puissent pas se plaindre du délai trop court accordé. Bernoulli accepta la suggestion
et annonce un délai supplémentaire pour ceux qui n’auraient recu ’annonce de juin
1696.

Le 29 janvier 1967 & 16100, Isaac Newton (1643-1727) de retour du « Royal Mint »
trouva une copie du probléme adressée par Bernoulli. Newton travaillat jusqu’a 4h00
du matin pour résoudre le probléme. Il envoyat sa réponse & Montague, le président
de la société Royale, pour que sa solution soit publiée anonymement. La solution de
Newton, indique que la courbe est celle d’une cycloide et fournit une méthode pour
la déterminer.

Leibniz et le Marquis de ’'Hopital résolurent le probléme de la brachistochrone.
Bernoulli pit identifier Newton comme 'auteur de la solution anonyme. Il déclara
tanquam ex ungue leonem, dont la traduction littérale est « on reconnait le lion a sa
griffe », qui signifie que ’on reconnait 'artiste a sa « patte ».

Vous pouvez lire I'histoire du calcul des variations et du probléme de la Brachis-
tochrone dans cet article de James Ferguson “A Brief Survey of the History of the
Calculus of Variations and its Applications” http://arxiv.org/abs/math/0402357.
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4. PC 3 : Espace—temps et formalisme
quadri-dimensionnel

donnée en 2012 et 2013
Relativité restreinte (PHY 431)

Pierre Vanhove
PC du 25 novembre 2014

4.1. Rappel de cours

4.1.1. Produit scalaire, élément de longueur

Dans le cadre de la relativité, ni I’espace ni le temps ne sont absolus. L’espace—temps
est le contexte naturel ou les événements sont repérés par quatre coordonnées, com-
posantes d'un quadrivecteur, le quadrivecteur position

29 ct
1
T T
X := = . 1
2= 1)
a3 z

Si nous dénotons par a* avec u = 0, 1,2, 3 les composantes de X, on souhaite que X =
Zi:o x# e, aient les coordonnées données dans selon une base {e,, u =0,1,2,3}.
Nous utiliserons la régle de sommation d’Einstein sur les indices répétés X = z# e,.
Seront sommés des indices répétés en « haut » et en « bas ».
Si X et Y sont deux quadrivecteurs de position le produit scalaire s’écrit

XY =a"y"e, e, (2)

ce produit scalaire devant étre égale & I'intervalle relativiste tel que
3
X -X=(ct)?—a?—y?—22=2""—2z. f:Z (3)

il faut donc que {e,, = 0,1, 2,3} soit une base orthonormée pour le produit scalaire
quadri-dimensionnel :

6# cCy = 77#1/ (4)

ot 77, sont les composantes du tenseur métrique, diagonal, de signature (4, —, —, —).
(Nous aurions aussi pu définir le produit scalaire avec la signature (—,+, +,+)).
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4. PC 3 : Espace—temps et formalisme quadri-dimensionnel

4.1.2. Vecteurs et formes linéaires

Une quadriforme linéaire F applique un quadrivecteur X sur un réel F(X). Elle
peut étre développée dans une base {6} :

F = f,.0". (5)
La base {0, = 0,1,2,3} duale de {e,} si
0" (ev) = 4y, (6)

Dans une telle base
F(X) = fuzt. (7)

4.1.3. Correspondance vecteur-forme

Le tenseur métrique 7, permet d’établir une correspondance (un isomorphisme)
entre les vecteurs et les formes linéaires : & chaque vecteur X de composantes z*
correspond une forme Q de composantes g, telles que

G = N’ = " =n"q,, (8)
ainsi
Q=qb" =2"e, =X. 9)

La métrique inverse n** est telle que
771/)\77)\# = 65 (1())

Si {z#} = {29, 7} sont les composantes X, les composantes{q,} de Q seront {g,} =
{a,} = {9, —).

A partir de maintenant nous dénoterons les éléments de la base duale e := 6~
Aucun confusion n’est possible car la nature la base est indiquée par la position de
I’indice.

4.1.4. Tenseurs

Un tenseur T, p fois contravariant et ¢ fois covariant, est un objet géométrique
défini dans un espace linéaire, produit direct de p espaces de vecteurs et g espaces de
formes linéaires. Il s’exprime dans la base naturelle induite par {e,} et {e#} comme
suit :

T:=T) 0 e, ® Qe @@ - ®e (11)

Le tenseur métrique permet de « monter ou descendre » des indices, c’est-a-dire de
relier des tenseurs de rang (p, ¢) & des tenseurs de rang (p+1,g—1) ou (p— 1,9+ 1).
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4.1. Rappel de cours

4.1.5. Transformation de Lorentz

Une transformation de Lorentz est un changement de base

{en} = {el, = eu(A7D} (12)

au cours duquel le produit scalaire est inchangé :

eu ey = Nuy - (13)

En conséquence,

Nuv = Npo A A%y (14)
Cette relation définit le groupe des transformations d’invariance de 1’élément ds? =
(ct)? — ().

Au cours d’un changement de base, {e,} — {e), = e,(A71)*,}, la base duale se
transforme au moyen de A : {e*} — {e’” = A”,et}. On parle de transformation
contravariante par opposition a la transformation covariante de la base {e,}. Tout
objet tensoriel est invariant mais ses composantes se transforment. Par exemple, les
composantes d’un quadrivecteur se transforment de maniére & satisfaire

X = eyt = e,z (15)

ott 2’V = AY, 2 ; de méme pour une forme avec f), = f,(A71)",.

La matrice A(f) d’une transformation de Lorentz générale a pour composantes

A% = v (16)

AOZ' = _'7627 1= 17 2a 3 (17)

No= = =B, i=1,23 (18)
i i Y i

Ay o= (5j+ﬁ55j. (19)

On en déduit alors I'action de cette transformation de Lorentz sur les composantes
du quadri-vecteur X : z/# = A(B)*, ¥

2’ = -5 1)

7 o= i++8 (Vllﬁ-f—a@) (20)
ou encore la relation inverse z# = A(—fB)",a'"
0 = )

o= T +48 (7115-5’”’0) (21)

v =1/4/1— 52 est le facteur de Lorentz de cette transformation, ¥ = gc étant la
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4. PC 3 : Espace—temps et formalisme quadri-dimensionnel

vitesse relative des deux référentiels d’inertie ot les composantes de X sont mesurées.

4.1.6. Groupe de Lorentz

De la méme maniére que les rotations sont les transformations qui préservent la
norme euclidienne, les transformations de Lorentz sont celles qui préservent I'invariant
de Lorentz.

En notation matricielles si 7 est la matrice de composantes 7, nous avons

RRT = T+= RcSO(3) pour les rotations (22)
AnAT = 5= AcSO(1,3) pour les transformations de Lorentz. (23)

Le groupe SO(1,3) a quatre composantes caractérisées par det A = £1 et (A%)? =
1+ 22:1(Ak0)2 > 1. Les transformations de déterminant 41 forment un sous-groupe
préservant orientation d’espace-temps. C’est le sous-groupe SO™(1,3) des transfor-
mations propres. Les transformations de Lorentz telles que A% > 1 forment le sous-
groupe orthochrone des transformations préservent le sens d’écoulement du temps. Il
est dénoté SOTT(1,3).

4.1.7. Temps propre

Le temps coordonnée est relatif et dépend du référentiel choisi. On définit le temps
propre, invariant et attaché & chaque observateur ou mobile. L’élément de temps
propre le long d’une ligne d’univers est

dr® = = =dt* — —-. (24)

Siy=1/4/1- 52 est le facteur de Lorentz en chaque point de cette ligne, I’élément
de temps propre est dr = dt/v. Le temps total mesuré par le mobile le long de sa
ligne d’univers, pour relier un point d’espace en t; & un autre point en to est

to
or = / dt (25)
t1 v

Comme v > 1 ce temps est inférieur ou égal & §t = to — t1, 'inégalité étant saturée
lorsque le mobile est au repos.

4.2. Quadri-vecteurs vitesse et accélérations

Le quadri-vecteur accélération A est défini comme la dérivée du quadri-vecteur
vitesse V par rapport au temps propre 7 : A = dV /dr.
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4.3. Cylindre en rotation

a) Donner I'expression de la quadri-vitesse V en fonction de la vitesse spatiale ordi-
naire dans le référentiel R. Calculer la norme du quadri-vecteur vitesse.

b) Donner alors 'expression de 'accélération dans R. Calculer le produit scalaire
entre les quadri-vecteurs vitesse et accélération.

c¢) On définit le quadri-vecteur d’énergie-impulsion P = mV. Donner les composantes
de ce quadri-vecteur, ainsi que P - P. En déduire 'expression pour 1’énergie d’une
)
particule massive relativiste en mouvement.

d) Que déduire que l'orthogonalité de 'accélération et du quadri-vecteur énergie-
impulsion ?

4.2.1. Contexte historique

La formule E = mc?, la plus célébre de la physique moderne du XXéme siécle.
Elle traduit I’équivalence entre ’énergie et la masse. Albert Einstein a incorrectement
démontré cette formule dans son article « Ist die Tragheit eines Korpers von dessen
Energieinhalt abhéngig ? » (A. Einstein 1905 Annalen der Physik 18 : 639-643) Ce fut
Max Planck qui établit correctement cette formule pour la premiére fois (M. Planck
1908 « Zur Dynamik bewegter Systeme », Annalen der Physik 26 1-34).

4.3. Cylindre en rotation

On considére un cylindre de rayon p et de longueur L en rotation uniforme w
autour de son axe (Ox) dans le repére inertiel R. On considére un référentiel R’ en
mouvement uniforme v = /3 ¢ selon 'axe (Ox).

a) Montrer que dans R’ le cylindre apparait comme un cylindre de rayon p mais de
longueur L /7.

b) On suppose que la surface du cylindre on été marqués des points de couleur alignés
le long du cylindre. Montrer que dans R’ le cylindre apparait tordu d’un angle
a = yBw/c par unité de longueur propre.
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5. PC 4 : Invariances et lois de
conservation ; théorie lagrangienne
relativiste

Relativité restreinte (PHY 431)
Pierre Vanhove
PC du 2 décembre 2014

5.1. Lagrangien du champ électromagnétique

On considére un tenseur antisymétrique F deux fois contravariant F*¥ dont les
composantes s’expriment en fonction de celles d’'un quadri-vecteur A de composantes

AH selon FHY ;= QFAY — OV AP,

a) Montrer que l'on a
OPFM + OMF"P + 0"FPF = 0. (1)

Soit un espace Euclidien tridimensionnel équipé du produit scalaire avec une si-
gnature (—, —, —). Ainsi le produit scalaire de deux vecteurs ¥ et W de composantes
] i ; e 3
contravariantes respectives v’ et w* s’écrit ¥- W = — >, ; v'w’.
b) Ecrire les composantes covariantes w; en terme des composantes contravariantes
w'. Réécrire le produit scalaire ¥ - en utilisant les composantes contravariantes

de U et les composantes covariantes de .

On définit sur cet espace-euclidien un tenseur deux fois contravariant f% = 9vJ —
0’v", puis considére le tenseur complétement antisymétrique e;; tel que €103 = 1 =
—€213 = —€321. On définit ensuite le tenseur w; (une fois covariant) w; = %eijkfjk.

¢) Montrer que w; = (6 X v) . On rappelle que V= (0/0, = 8; = —0").

7

Les composantes du champ électromagnétique E = (E*,EY,E%) =
(—Ey, —E,,—E,) et B = (B*,BY,B*) = (—B,,—By,—B.) sont reli¢es a celles du
tenseur F'*¥ de la fagon suivante

0 —E®/c —EY/c —FE?/c

E*/c 0 B -B

pw _ z y

F EV/c —-B., 0 B, |- )
E*)c B, -B, 0

C’est le tenseur de Faraday.
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d) Montrer que les équations (1) conduisent aux équations de Maxwell homogénes
. 0B
VXE = ——— 3
ot 3)
=0 (4)

—

AVAR

e}

On utilisera que 8° := 9/(cOt) = 9y et la question précédente en démontrant que
Bi = %Giijjk.

e) Vérifier que les champs E et B dérivent de potentiels

B = Vx4 (5)
. 04
Voo (6)

=
Il

f) Montrer que ces équations sont invariantes sous les transformations suivantes
A - A-Vy (7)
Ix
— + = 8
o = o+ 3)

Pour fixer cette ambiguité on impose la condition de jauge suivante

106 = -
S~ V. A=0.
Sy TV 0 (9)

On considére maintenant le Lagrangien du champ électromagnétique en présence
de matiére, tel que 'action prenne maintenant la forme

1 i\
S = / <—4MFWFW —0p+7- A) d>wdt (10)
0

g) Vérifier 'expression de F*F),, en fonction de EetB:

E?
FME, =-2|—= —B*| . (11)
C

h) En utilisant les expressions et @, écrire les équations de Euler-Lagrange pour
les champs ¢ et A.

i) Comment se traduit I'invariance de jauge donnée dans les équations @ et pour
le Lagrangien ?
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5.2. Lagrangien d’une particule dans un champ
électromagnétique

On considére une particule dans un champ électromagnétique extérieur, dont ’ac-

tion est donnée par
to
= —mc / 1- —dt — q — 7. A)dt (12)

a) Ecrire les équations d’Euler-Lagrange dérivant de cette action On utilisera que
i x (Ux W)= (¢ W) — (@ v)w, ainsi que les relations (3)) et ().

b) En utilisant la relation mc? = (€/c)?—p?, déduire 'équation satisfaite par 'énergie
£ = ymc? de la particule ?

¢) On introduit le quadri-vecteur énergie-impulsion P de composantes (€/c, ym) ou
E = ymc?. Ecrire les équations du mouvement en utilisant les composantes du
quadri-vecteur P, du quadri-tenseur F définit dans 1’équation . On utilisera le
temps propre 7 tel que dt = 7y dr et le quadri-vecteur vitesse V = 7 (¢, ¥).

d) Montrer que l'on peut exprimer l'action ((12]) sous une forme explicitement inva-
riante de Lorentz avec des quadri-vecteurs.
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6. PC 5 : Mécanique relativiste

Relativité restreinte (PHY 431)
Pierre Vanhove
PC du 9 décembre 2014

6.1. Rappel de cours

Le quadrivecteur énergie—impulsion d’une particule libre de masse m et de quadri-
vitesse V est défini par

P=mU, (1)
avec U = v (¢, ¥) dans un référentiel d’'inertie. Dans un référentiel d’inertie, les com-
posantes de P sont (£/c,p), oit & = ymc? est I'énergie totale de la particule et 7 est
son impulsion. L’énergie cinétique

T =& —mdc? (2)

2 2.2

car mc? est I'énergie au repos. La contrainte physique U? = ¢? implique P? = m?c

qui, en terme de composantes, s’écrit :
2 =m2ct + . (3)

Cette relation porte le nom de relation de couche de masse. L’énergie cinétique est

donnée par
P2
T = mc? 1+ -1]). (4)

m2c?
En cinématique relativiste nous avons (pour m # 0)
E=qmc?, §=ymi (5)

et par conséquent

\/\/fzcz. (6)

Cette derniére relation reste vraie lorsque o2 = ¢?, auquel cas & = \/p5 c. De la
relation de couche de masse on déduit alors que m = 0 pour ces particules. Pour une
particule de masse nulle P = % (1,7) ou 71 est un vecteur unité selon la direction du
mouvement.

TE=pf = € =
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Au cours d’un processus de collision entre particules
a@) + a@) = be) +bay + -+ (7)

I’énergie et 'impulsion totales sont conservées. Ceci se formule comme suit :
Piota := Z Pa(i) = Z Pb(i) = Piote- (8)
i i

Cette conservation est valable dans tous les référentiels d’inertie.

En géométrie minkowskienne, les quadrivecteurs satisfont une inégalité triangulaire.
Pour tout couple de quadrivecteurs P et Py, du genre temps, orientés tous deux vers
le futur (ou tous deux vers le passé), il vient :

[Py + Pof| > [[Pf| + [P 9)

L’inégalité est stricte si un des deux quadrivecteurs (et seulement un) est de genre
lumiére.

6.2. Théoréeme de la composante nulle

a) Montrez que si un quadri-vecteur A a sa composante temporelle nulle dans tous
les référentiels Lorentzien alors le quadri-vecteur est nul.

b) Montrer que si P est un quadri-vecteur de genre temps P - P > 0 alors il existe
un référentiel ol ses composantes sont données par P = (P, 6) Lorsque P est
le quadri-vecteur énergie-impulsion d’une particule, ce référentiel est celui ou la
particule est au repos.

c) Soit AP la différence de la somme des quadri-vecteur énergie-impulsion des par-
ticules initiales et finales AP = 37 . P/ - . ... Pl La composante

temporelle de ce quadri-vecteur est AE = ghinale _ ginitiale 15 difference entre I'éner-
gie finale et initiale. Montrer que la conservation de I’énergie AE = 0, implique la
conservation de la quantité de mouvement Ap.

Rappel : Si (z#) et (2'#) sont les composantes d'un quadri-vecteur X exprimées
dans les référentiels R et R’ tels que a’# = A(B)H, z¥ alors

v =1/4/1—- 52 est le facteur de Lorentz de cette transformation, ¥ = 5 c étant la
vitesse relative de R’ par rapport a R.
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6.3. Masse invariante et référentiel du centre de masse

6.3. Masse invariante et référentiel du centre de masse
Considérons un systéme de particules libres de masses m;.

a) Démontrer 'inégalité triangulaire @ En déduire que le quadri-vecteur énergie—
impulsion total satisfait
VPR > mic, (11)
i

On définit généralement l'invariant relativiste suivant :

s = [Puotl*- (12)

b) Que vaut s pour une collection de particules au repos les unes par rapport aux
autres ?

On considére deux particules de masses mj et mo. On suppose que la particule 2
vient percuter la particule 1 au repos, et que les deux particules forment un état lié
de masse my.

¢) Exprimer ’énergie (totale) de la particule 2, dans le référentiel du laboratoire, en
fonction de m; et des masses mq et mo des particules.

d) Donner I’énergie totale du systéme initial. Donner I'expression du facteur Y en
fonction des masses. Considérer la limite non relativiste et interpréter le résultat.

Dans le cas ol Pyt est du genre temps c¢’est-a-dire || Pyot H2 > 0, on définit le référentiel
du centre de masse en imposant Pt = 0.

e) Déterminer la vitesse 7™ = M ¢, du référentiel du centre de masse dans le

référentiel du laboratoire comme fonction des composantes du quadrivecteur Pygt.

f) Retrouver 'expression du facteur +M pour le systéme a deux particules de la
question précédente.

6.4. Effet Compton

On considére la diffusion de rayon X sur du graphite. On considére un électron
e~ au repos percuté par un photon «. Aprés le choc le photon et I’électron diffusent.
Nous avons la réaction suivante

y+e —=v+e” (13)

a) Ecrire la relation de conservation des quadri-vecteurs énergie-impulsion
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phaton incidant

i

Ditfusaon Cormgion: Collision dun pholon aved un éeciion au repos

FI1GURE 1. — Effet Compton de diffusion d’un photon sur un électron

b) On dénote par Pg et Pf, et Pi, et Pg _ les quadri-vecteurs énergie-impulsion initial
et final du photon, respectivement de 1’électron e~. Calculer

(P! — /)2 (14)
en fonction de 'angle de diffusion du photon

c¢) Calculer
‘ 2
(P —P/) (15)
en fonction des énergies des photons. Pour cela on utilisera la relation de conser-

vation de l’énergie.

d) En déduire la relation entre ’angle de diffusion et la différence des longueur d’ondes
des photons initial et final. On rappelle que € = he/A.

Pour une source de Césium 137 émettant des photons d’énergie EZ'Y = 662 KeV,

I’énergie des photons finaux est maximale, lorsque A/ est minimale. Ce qui est réalisé
pour € = 7. On trouve alors 54 = 184.35KeV.

6.4.1. Contexte historique

On remarque 'apparition de longueur caractéristique

h
Ae = =2410""%m, (16)

mecC

qui représente la longueur d’onde de Compton de ’électron. Pour observer la diffusion
des photons sur des électrons il faut donc envoyer des rayons X. C’est ce que Arthur
Holly Compton a réalisé in 1923 & 'université de Washington & Saint Louis (USA).
Cette expérience a été récompensée par le prix Nobel de physique en 1927.
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6.4. Effet Compton

Cet effet est important car il démontre que les propriétés lumiére ne peuvent pas étre
seulement comprise en considérant la lumiére comme une onde électromagnétique. La
théorie classique de diffusion des ondes électromagnétique donnée par la diffusion de
Thompson, ne peut pas expliquer le décalages des longueurs d’onde a faible intensité.
La lumiére doit donc se comporter comme une particule pour expliquer ’observation
de l'effet Compton aux faibles intensités.

C’est cette observation qui a convaincu Compton que la lumiére est composée de
corpuscules (les quantas) dont I’énergie est proportionnelle a la fréquence, comme
prédit par Albert Einstein.
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6. PC6 : Relativité et
électromagnétisme

Relativité restreinte (PHY 431)
Pierre Vanhove
PC du 16 décembre 2014

6.1. Loi de transformations
On considére le référentiel du laboratoire R et un référentiel R’ en mouvement
uniforme de vitesse ¥ = ¢ 8 par rapport & R.

Grace aux lois de transformation des tenseurs on peut montrer les lois de transfor-
mation des champs F et B

ﬁﬁ = Ej,; E| =y (EiwLCgX éL)» (1)
— — — — 1 — —
1 = B Bi=n» (BL—05XEL>' (2)

ou W) est la projection du vecteur w selon la direction du mouvement relatif des deux
référentiels, et @, la composante orthogonale au mouvement.

a) Rappeler d’ot viennent les lois de transformations des champs électriques et ma-
gnétiques.

b) Rappeler pourquoi les deux combinaisons E? /c? — B2 et E - B sont invariantes par
transformation de Lorentz.

¢) Quelles sont les conditions pour qu'’il existe un référentiel ou s’annule le champ
électrique 7

d) Donner I'approximation Galiléenne (au premier ordre en v/c) des transformations
des champs.

e) Finalement on considére que dans un référentiel R le champ électrique est selon
laxe (Oy), E = E ¢, et le champ magnétique B = 0 nul. Donnez l'expression
des champs dans le référentiel R’ en mouvement uniforme a vitesse ¢ 3 selon I'axe
(Oz). Considérer la limite ultra-relativiste, || ~ 1, et interpréter le résultat.
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6.2. Mouvement quand les champs sont paralléles

On se place maintenant dans le référentiel o E et B sont paralléles le long de ’axe

(Oz).

a) A partir de I'expression de F*” donner les équations du mouvement pour les
composantes de la quadrivitesse U en fonction du temps propre 7 de la particule.

b) Résoudre les équations en U en supposant que 'on a les conditions initiales pour

7 =0 telle que U* =y, UY =U? =0 avec v = 1//1 — (v/c)?.

c¢) A partir de la définition de la quadrivitesse donner alors I’expression de la trajec-
toire en fonction du temps ¢ du laboratoire.

d) Que se passe-t-il quand E=0°? Quelle est 'expression de la pulsation (pulsation
cyclotron) du mouvement ?

¢) Pour B = 0 donner I'équation de la trajectoire selon I'axe (Oz) en fonction du
temps t. Montrer que la limite non-relativiste donne ’expression classique pour la
mouvement d’une particule chargée soumise a un champ électrique uniforme

qE 4
~ —t“, 3
p o (3)

6.2.1. Contexte historique et expérimental

L’approximation Galiléenne de la transformation du champs B est suffisante pour
correctement décrire 'influence d’une champs magnétique ambiant sur le spin de
I’électron.

S’il n’y a pas de différence qualitative entre le mouvement relativiste et le mouve-
ment classique, le facteur ~ induit néanmoins des complications techniques dans les
applications. Dans de nombreux types d’accélérateurs, un champ magnétique est uti-
lisé pour confiner les particules au voisinage d’une trajectoire circulaire. Le facteur
fait que le rayon de ces trajectoires est, pour des particules ultra-relativistes, beaucoup
plus grand que ce que prédit la mécanique classique. L’encombrement de ce type de
dispositif est en partie dii a cet effet. De plus, la fréquence des champs accélérateurs,
qui doit étre adaptée a la fréquence cyclotron, doit étre ajustée pendant toute la phase
d’accélération pour tenir compte de la variation de ce facteur relativiste. Notons que
cette « contraction » relativiste de la fréquence cyclotron peut étre mise en évidence
méme pour des électrons de trés basse énergie. Dans une trés spectaculaire série d’ex-
périences, Hans Dehmelt et ses collaborateurs (Université de Seattle) ont étudié des
électrons confinés dans un piége constitué d’un champ magnétique et d’un champ
quadripolaire électrique (piége de Penning). Ils ont ainsi mesuré avec une précision
remarquable, sur un électron unique, le célébre facteur gyro-magnétique anormal, qui
constitue un test sévére de 'électrodynamique quantique. Une des étapes de 'expé-
rience est d’exciter, par un champ radiofréquence convenable, le mouvement cyclotron
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de I’électron. Dehmelt a pu observer que la fréquence de résonance cyclotron se dé-
place avec I’énergie de I’électron, conformément & la loi relativiste. Les énergies mises
en jeu n’étant que d’une fraction d’électron-volt, on pourra juger de la sensibilité de
I’expérience.
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7. PC 7 : Mécanique Hamiltonienne

Relativité restreinte (PHY 431)
Pierre Vanhove
PC du 6 janvier 2015

7.1. Rappel de cours

Nous adoptons les notations introduites en PC3, a savoir ¢ désigne les cordonnées
généralisées, % := ¢ les vitesses généralisées et s est un parameétre le long de la
trajectoire pouvant représenter le temps mais pas seulement.

Pour un systéme a n degrés de liberté décrit par la fonction de Lagrange £(q, 7 s),
on définit I’hamiltonien par transformation de Legendre, fonction des coordonnées
généralisées, des moments généralisés de Lagrange et du paramétre s :

H(q,P,s) =07~ L(7d.5), (1)
avec or
ﬁ:: — . 2
o (2)
En composante cette équation s’écrit
oL
Pi = e (3)

On remarquera la position de I'indice pour la moment 7 := (p;) alors que ¢ = (q)
pourt=1,...,n.
Il résulte de la définition générale de ’hamiltonien que

dH OH oL
=95~ s (4

et que les équations du mouvement sont & présent données par 2n équations du premier
ordre, & savoir les équations d’Hamilton :

. OH . OH
qg=—= et p=

op o7 (5)

Une coordonnée ¢ est dite cyclique lorsque

oH
B = (6)
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Ceci traduit 'invariance de H vis-a-vis de la transformation ¢* — ¢ +&®. Il s’en suit
que p, est une constante du mouvement.

Réciproquement si OH/0p® = 0 alors ¢ est une constante du mouvement. L’in-
dépendance de H vis-a-vis de p, est & interpréter comme une contrainte puisque ¢“
est une constante du mouvement. Ceci suggére une similitude entre contraintes et
symétries.

Le formalisme hamiltonien est le cadre conceptuel naturel de la mécanique classique.
C’est aussi le formalisme qui se généralise aisément en celui de la mécanique quantique.
On y définit I’espace des phases, c¢’est-a-dire une variété symplectique coordonnée par
les variables d’état (g, p) et dotée d’une structure de crochets de Poisson :

définit pour toute paire de fonctions dynamiques f (¢, p,t) et g (¢, p,t). En particulier
{d.d} = {pipi} =0 et {d',pj} =0 (8)
Le crochet de Poisson satisfait la régle de Leibniz :
{f.gh} = g{f,h} +{f. g}h, (9)
et 'identité de Jacobi :
{fAg.h}}y +{g,{h. f}} +{h.{f,9}} = 0. (10)
L’évolution temporelle de toute fonction dynamique est donnée par
f=2 = tr ()

Pour toute variable dynamique f (g, p) ne dépendant pas explicitement du temps, on
conclut donc que

=0 {f,H}=0. (12)

Ceci est un cas particulier du théoréme de Neether : & toute invariance correspond
une loi de conservation.

Grace a l'identité de Jacobi, on démontre le corollaire suivant : si f et g ne dépendent
pas explicitement du temps et sont conservées, il en va de méme pour {f, g}.

On définit enfin les transformations canoniques comme des transformations des
variables d’état (coordonnées et moments) qui conservent la structure de crochet de
Poisson et donc les équations d’Hamilton.

Les transformations canoniques sont les transformations des variables d’état
qui laissent invariantes les équations du mouvement. On montre que (¢*,p;) —
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7.1. Rappel de cours

(Qj (qiapi)y Pj(qi, pi)) est une transformation est canonique si et seulement si

{Q.Qy={P,P}=0 et {Q.P}=0. (13)

Il en résulte que les crochets de Poisson peuvent s’écrire indifféremment avec tout
systéme de variables obtenu par transformation canonique.

FIGURE 1. — Espace des phase du pendule simple

7.1.1. Exemples

1. Lorsque £(g, ¢ s) = T—V ou T({, ¢: s) est une fonction quadratique des vitesses
et V' (q; s) une fonction indépendante des vitesses alors H = T+ V. C’est ce que
nous avons vu en PC3 lorsque nous avons étudié la fonctionnelle de Beltrami.

. La ﬁgure représente Iespace des phases (0(t), pp = 6(t)) des orbites d’un pen-
dule simple de longueur unité oscillant par rapport a la verticale. La conservation

de I'énergie donne ‘
62 +2(1 —cosf) =H (14)

Si I’énergie du systéme est faible le mouvement est oscillatoire autour de la
verticale (orbites périodes en noir), si ’énergie est importante le pendule tourne
autour de 'origine (orbites en rouge). L’orbite en bleu est la séparatrice entre
les deux régimes et les points, au centre et aux croisement des lignes bleues, sont
des points d’équilibre 8 = nmw pour n € Z. Seuls § =0 mod 27 sont stable. La
solution de I’équation différentielle s’exprime au moyen d’une fonction elliptique
de Jacobi.

Si 'on se place au voisinage du point d’équilibre instable § = 7 mod 27, il est
difficile de prédire I’évolution du systéme aprés une petite perturbation. Si elle décroit
I’énergie du systéme nous devrions avoir une oscillation périodique, si elle augmente
I’énergie ’évolution sera une rotation autour de l'origine.
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7. PC 7 : Mécanique Hamiltonienne

L’analyse de la réponse des systémes aux petites perturbations commenca avec les
travaux de Poincaré puis Liapunov et Birkhoff. Il apparut que méme pour un systéme
déterministe avec un faible nombre de degrés de liberté 1’évolution du systéme est dif-
ficile & prédire. On parle de comportement chaotique. Sous 'impulsion de Kolmogorov
I’école russe accomplit des travaux formidables dont ceux de Bogoliubov, Krylov, et
Arnol’d. En 1971 larticle de D. Ruelle et F. Takens suggéra pour la premiére fois que
le chaos peut se développer aprés une succession de trois bifurcations contrairement
4 la théorie proposée par Lev D. Landau qui supposait une infinité de bifurcations.

On pourra consulter le livre de David Ruelle Hasard et Chaos Odile Jacob (1991)
pour se familiariser avec le caractére particulier du chaos.

Dans le livre C. Teitelboim, M. Henneaux, Quantization of gauge systems, Princeton
University Press, 1992, on trouve un exposé systématique des systémes hamiltoniens
contraints avec des invariances globales et locales diverses.

7.2. L’oscillateur harmonique

On considére un oscillateur harmonique & une dimension de potentiel

Ulg) = 5 me’ (15)

a) Déduire les équation du mouvement en utilisant le formalisme Lagrangien
b) Déduire les équation du mouvement en utilisant le formalisme Hamiltonien

¢) Montrer a l'aide des équations de Hamilton que le Lagrangien suivant décrit le
mouvement d’un oscillateur amorti :
1

L= B et (q2 — w2q2) . (16)

7.3. Mouvement dans un repére tournant
En PC3 nous avons vu que le lagrangien, pour une objet ponctuel de masse m de
vitesse ¢ dans un référentiel en rotation de vitesse angulaire €2, est donné par

c:%u2+ma-(ﬁxf)+%(ﬁxf)2. (17)

a) Montrer que les moments généralisés et I'hamiltonien correspondant sont donnés
par

7 = m(UJerF) (18)
2
p R
= = —Q-/ 1
M= L a7 (19)
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(20)

>y
I
=3y
X

gl

est le vecteur moment cinétique.

7.4. Le cerceau a vitesse angulaire constante

Une perle glisse sans frottement le long d’un cerceau de rayon R animé d’un mou-
vement de rotation autour de son axe a vitesse angulaire w constante. La position de
la perle sur le cerceau est déterminée par un seul degré de liberté, I’angle 6 avec la
verticale. La position du cerceau est elle décrite par ’angle ¢

4

an
N

FIGURE 2. — Perle sur le cerceau en rotation

a) Ecrire le lagrangien de ce systéme et en déduire I’équation du mouvement.
b) Ecrire 'hamiltonien du systéme et en déduire & nouveau I’équation du mouvement.

¢) Montrer que la perle est soumise & un potentiel effectif V' (0) dont on étudiera le
comportement en fonction de 6. On posera w% =g/R.

d) Quel est le comportement de la perle pour des vitesses de rotation lente (w < wp) ?

e) Méme question dans le cas de la rotation rapide (w > wy).
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8. PC8 : Relativité et gravitation

Relativité restreinte (PHY 431)
Pierre Vanhove
PC du 13 janvier 2015

8.1. Rappels de cours

Dans cette PC nous abordons des notions de relativité générale. La relativité géné-
rale traite du cas des espaces-temps courbes et un certains nombre des formules vues
dans le cas de 'espace-temps plat de Minkowski doivent étre adaptées pour refléter
ce fait.

Le temps propre d'une particule ds* = (cdr)? = (dt)? — (d7)? = nydztdz” va
devenir 1’élément de longueur géodésique

ds? = g (2°) datdx” . (1)

Sous un changement de coordonnées locales z# — y*(x) 1'élément de longueur
géodésique doit étre invariant donc
oxt dx”
dyr Oy’

ds® = Guv () dy?dy® (2)

implique que la loi de transformation de la métrique est donnée par

oxH 0x”
9po (Y) = Guv() Dy g (3)

Dés 1911 Einstein a réalisé que le principe d’équivalence a deux conséquences phy-
siques importantes sur la propagation des rayons lumineux dans un champ de gravi-
tation. La premiére est que le décalage de la fréquence d’émission et de réception en
des positions de 'espace-temps ol le champs gravitationnel différe.

C’est 'effet Doppler gravitationnel donné par

P
Vemission = Vreception <1 + 62) (4)

oul @ est le potentiel gravitationnel. Dans un univers en expansion cet effet est res-
ponsable du rougissement de la lumiére (le redshift). La facteur de rougissement est
utilisé pour indiquer distance des objets astrophysiques.

La seconde conséquence est que la lumiére sera déviée par un objet massif gravi-
tant. I a fait un premier calcul en 1911, publi¢ dans l'article « Uber den Einfluss
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FIGURE 1. — Lettre d’Einstein a George Ellery Hale a ’observatoire du Mont Wilson
en Californie, ou il demande de mesurer la déviation des rayons lumi-
neux. La déviation des rayons lumineux prés du Soleil fut confirmée par
Eddington qui releva la position des étoiles durant ’éclipse de 1919.

der Schwercraft auf die Ausbreitung des Lichtes » Annalen der Physik [35], 1911.E]
Ce calcul est celui présenté dans la question 9.3b. Il donne une réponse incorrecte
d’un facteur 2 trop faible car il n’inclut pas les effets relativistes. Il a corrigé cette
erreur dans son article de 1916 en travaillant avec la métrique courbe de Schwarschild
décrivant la géométrie de 'espace-temps au voisinage d’un objet massif stationnaire
a symétrie sphérique. La courbure des rayons lumineux par des objets massifs a pour
conséquence visible les phénoménes de lentilles gravitationnelles.

Une autre manifestation expérimentale est la génération d’onde gravitationnelles.
On a des mesures indirectes, grace a 1’évolution des systémes de pulsar binaire. On
n’a pas encore de détection directe des ondes gravitationnelles.

8.2. Géodeésiques en relativité générale

On considére le Lagrangien d’une particule en mouvement entre deux événements

Aet B .
5= / (dr)? (5)

dans un espace-temps courbe de métrique g, (7). Le temps propre s’exprime alors

(cdr)? = Guv (2P)dat dx” (6)

1. Une traduction anglaise est accessible ici http://www.relativitybook.com/resources/Einstein_gravity.html

56



8.2. Géodésiques en relativité générale

ainsi nous obtenons un Lagrangien généralisant celui vu en PC4 (exercice 4.2)
SB
S = / G (x7)HT" ds, (7)
SA
ou &# est par définition dz# /ds et ou s est un parameétre le long de la courbe joignant
AaB.

a) Ecrire les équations d’Euler-Lagrange dérivant de ce Lagrangien. Ces équations
sont celles des géodésiques suivies par la particule.

b) Montrer que ces équations peuvent se mettre sous la forme
B4 Th i =0 (8)

ol F’; p est le symbole de Christoffel définit par

1
Fl)fp = 5.9“0 (8)\gcrp + apga)\ - 80'9)\;)) ) (9)

gM" étant 'inverse de gy, i.e. vérifiant g""g,, = d5.

On considére le mouvement lent d’une particule ponctuelle dans un champ gravita-
tionnel faible et stationnaire. Ainsi la métrique est proche de la métrique de Minkowski
et s’écrit

G = Nuw + by avec hy, <1 et hy = hy,. (10)

On admettra que 'on peut paramétriser le mouvement de cette particule par son
temps propre en prenant s = 7.

¢) Montrer que les équations géodésiques se réduisent aux équations du mouvement
d’une particule dans un champ gravitationnel que 'on reliera aux composantes
pertinentes de Ay, .

On considére la métrique de Schwarzschild donnée par

-1
o= (12000 ) ar— (1 208) ot o)

ot Gy est la constant de Newton. On suppose que 'on se place loin de r = 0 et que
I’on peut développer cette métrique au voisinage de la métrique de Minkowski écrite
en coordonnée sphérique donnée par

ds* = dt* — dr® — r* (df* + sin® 0dp?) (12)

d) Vérifier que le calcul précédent permet de retrouver le potentiel gravitationnel
usuel autour d’un corps & symétrie sphérique.
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La métrique de Schwarzschild fait intervenir un rayon caractéristique rg = 2G M /c?.
Pour le soleil ce rayon est vaut ry ~ 2953 m soit environ 3 km.

8.3. Déviation des rayons lumineux

A Y
—— T
b v
N
N
Y .
1) x

FIGURE 2. — Déviation de la lumiére au voisinage du soleil.

On considére une petite masse m # 0 arrivant de 'infini et rasant le soleil de masse
Mg, La trajectoire de la particule s’incurve d’un angle A faible (voir la figure). On
supposera que y ~ b est constant.

a) Montrer que 'angle de déviation A# est donné par

oo
AG = / Dyv, dt. (13)
— 0o
ol vy est la projection de la vitesse sur 'axe verticale Oy de la figure.

b) En utilisant le bilan des forces en mécanique classique calculer la variation dv,/dt
de la composante verticale du moment cinétique. En utilisant que dx = wvdt est
constant, puisque I’on suppose la déviation faible, en déduire I'expression pour Af.

¢) En déduire le résultat pour la déviation des rayons lumineux par le soleil dans le
cadre de la mécanique Newtonienne. Pour cela on utilisera les valeurs suivantes
pour la masse du soleil My = 1.989110%° kg et son rayon Rs = 695500 km et on
rappelle la valeur de la vitesse de la lumiére ¢ = 299792458 m/s et la constante de
gravitation Gy = 6.67300 x 10~ m3/(kg s?).

Nous allons maintenant recalculer cette déviation dans le cadre de la relativité
générale.
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8.4. Compléments : les équations d’Einstein

¢) Montrez que ’équation du mouvement géodésique dans implique

1 dv¥ c v

LA (f 7)—2ry. 14

 dn 00\, 1o 20 (14)
Pour cela on rappelle que u# = dx*/dr, donc v’ = ~(v) = (1 — v2/c2)_%,

T

u® = yv¥/c et u¥ = yov¥/c. On utilisera les approximations suivantes u¥ ~ 0,
¢

u' ~constante, u” ~constante. Et que I'f; ~ '}, pour la métrique de Schwarz-
schild donnée dans I’équation ([11)).

d) En supposant que pour le soleil '}, = I'4; ~ +GnMb/(r3c?) et T, ~ 0 calculer
I’angle de déviation de la lumiére par le soleil.

e) Interprétez la différence entre les deux résultats.

8.4. Compléments : les équations d’Einstein

A partir des symboles de Christoffel, on peut définir le tenseur de Riemann R* vpo
par la formule

RM, = 0Tl — 0,TY, + rﬁarﬁ;p —T),T%, . (15)

vpo

Puis on définit le tenseur de Ricci R,y := R vuo €t le scalaire de Ricci R := R, g"" =
R* g,,,. La relativité générale d'Einstein découle du Lagrangien d’Einstein-Hilbert

4

¢ / \/—dethd4x+/ V/—detg Lo, d'z, (16)
My My

= 167Gy

ou det g = det(g,), Gy est la constant de gravitation de Newton. La variation du
lagragien de matiére L, donne le tenseur-énergie impulsion décrivant le couplage de
la matiére ou densité d’énergie & la gravitation

T i= — 2 d(v/—det gL,) . (17)

v—detg g

Un calcul un peu long de la variation de cette action par rapport a la métrique g,
donne les équations d’Einstein

1 81G
Rw/ - *Q;WR = TN

: T (18)

Nous recommandons les livres S. Weinberg “Gravitation and Cosmology” John Wiley,
New-York (1972) et Landau and Lifchitz “Théorie classique des champs” MIR.
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Deuxiéme partie .

Enoncés des devoirs a la maison
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9. DM1 : Devoir a la maison

9.

Relativité restreinte (PHY 431)
Pierre Vanhove
Devoir a la maison

a rendre en PC4 (2/12/2014)
1. Equation d’onde

On considére l'espace a quatre dimensions de coordonnées (ct,x,y, z) munit de la

métrique n* := (+1, —1,—1, —1). Soit (ct’, 2’, 3/, 2’) un autre systéme de coordonnées
reliée au premier systéme par la transformation suivante

a)
b)

ct a b 00 ct'
x b a 0 0 x
y|l |0 0 1 0 Y (1)
z 0 0 01 z

On considére 'opérateur d’Alembertien définit par

n—19 0 O 9 2
c2ot2  0x2 0Oy? 022 )
Déterminer la loi de transformation du d’Alembertien sous la transformation .

Considérer le cas de deux observateurs avec une vitesse relative v selon 'axe (Ox)
faible devant la vitesse de la lumiére. Montrer qu’au premier ordre en v/c la trans-
formation de référentiel entre les observateurs correspond a (a,b) = (1,v/c). Cal-
culer la transformation du d’Alembertien sous cette transformation. Que concluez-
vous ? On examinera le cas particulier ou ¢ — oo.

On considére maintenant que nos deux observateurs sont relativistes, toujours en
mouvement relatif & vitesse v le long de I'axe (Ox). Donner la loi de transformation
du d’Alembertien. Que concluez-vous ?

On consideére ’équation de Schrédinger
h? oV(t,z,y,z2)
— — AU g — NIV
5 AVt 2,y,2) + Uy, 2) Ut 2.y, 2) = th———0, (3)

avec la laplacien A = (9/0x)? + (8/0y)? + (0/02)2. Etudier l'invariance cette
équation sous une transformation galiléenne. Montrer qu’il existe une fonction
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f(t',2') telle que ¥(t,z) = f(t',2') (¥, 2') avec U(#, 2') une fonction d’onde
satisfaisant I’équation de Schrodinger en les variables (¢, z').

e) Que ce passe-t-il pour 'équation d’onde O¢(t, z,y,z) = 0 dans le cas galiléen et
relativiste. Peut-on trouver une fonction f(¢', ') telle que ¢(t, ) = f(t', z') (¢, 2')
et que ’équation d’onde soit invariante sous les transformations galiléennes. Qu’en
déduire sur la nature de I’équation d’onde ?

9.2. Paradoxe d’Ehrenfest

En 1909 Paul Ehrenfest a énoncé un paradoxe semblant montrer une incohérence
logique & la relativité restreinte.

On considére un disque de rayon p en rotation avec une vitesse angulaire constante
w. On dénote par R le repére inertiel du laboratoire et R’ le repére en rotation attaché
au disque.

a) Quelle est la valeur du rayon du disque dans les repéres R et R’ ?

b) Quelle est la circonférence L dans le repére du laboratoire R et L’ dans le repére
du disque en rotation ?

c¢) Comparer les rapports L/R et L'/R'? Qu’en concluez-vous ?

9.3. Effet Sagnac

Polariseur =53~ /4 70

+#
— i A -
Source " Fibre cotique
L1 — 12 Y monomode
A4

| Déteciaur

L’effet Sagnac est un autre effet paradoxal de la relativité restreinte découvert par
Georges Sagnac en 1913. Cet effet permet de détecter en optique un mouvement de
rotation par rapport & un référentiel inertiel. Des gyroscopes & laser exploitant 1’effet
Sagnac sont utilisés dans certains avions de ligne Airbus ou Boeing pour mesurer avec
précision la rotation d’un dispositif relativement a un repére inertiel.
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On considére & nouveau un disque de rayon p en rotation avec une vitesse angulaire
constante w. On dénote par R le repére inertiel du laboratoire et R’ le repére en
rotation attaché au disque.

Sur le bord du disque est placé un émetteur/récepteur E. Ce dispositif émet un
signal S7 qui se propage avec une vitesse wi dans le sens de rotation du disque, et
un signal Se qui se propage avec une vitesse wo dans le sens opposé a la rotation du
disque. Les deux signaux évoluent le long du bord extérieur du disque.

a) Déterminez les positions angulaires 0; et 02 de réception des signaux S; et Sy par
le détecteur.

b) Calculer les temps propre 71 et 7o de propagation de chacun des signaux entre
I’émission et la réception. Calculer la différence des d7 = 11 — 7o.

¢) Si Pémetteur/récepteur émet de la lumiére de maniére isotrope w’' = wy = —ws,
donner I'expression de différence de temps 67.

d) Considérer la limite non relativiste. Qu’en concluez vous ?
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DM2 : Second devoir a la maison

Relativité restreinte (PHY 431)
Pierre Vanhove
Devoir a la maison

a rendre en PC7 (6/1/2015)
1.1. Equation de Maxwell et sources

Le rang de covariance d’un tenseur est augmenté d’une unité par I’action de 'opé-
rateur 0 de « composantes » {0, =0,1,2,3} = (%, ﬁ) Le tenseur métrique (7,
ou son inverse ) et le tenseur antisymétrique de Levi-Civita (€, ou e**?? avec
023 =1 = —e0123) peuvent aussi étre utilisés pour engendrer de nouveaux tenseurs
ou scalaires (invariants) & partir de tenseurs préalablement définis.

Si I'on considére le tenseur de Faraday F décrit le champ électromagnétique. Ses

composantes F),,, forment la matrice suivante :

0 E*/c EY/c E?/c

| -E®¢ o B. -B,
F = —EV/c —B, 0 B, |’ (1)

—E*fc B, -By, 0

alors
FH = ghvpo 8VFW. (2)

a) Montrer 'équivalence

Fl=0<+= 0,F,,+ 0y Fp, + 0pF =0 (3)

On a vu en PC4 que cette équation implique les équations de Maxwell suivantes

—

V-B = 0 absence de monopoles magnétiques (4)
V x E+ 88713 = 0 loi de Faraday (5)
b) Vérifiez les expressions des invariants relativistes du champs électromagnétique
o F = —2 (f; _B'2> : (6)
P F Fpy = %F.B (7)
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¢) Montrez que ’équation

b = po ", (8)

implique les équations de Maxwell avec sources

V-E = 2 loi de Gauss 9)
€0
=~ 10E
V x B — 25— po7 loi d’Ampére (10)

ol o et jsont les densités de charge et de courant (rappel : pgegc?® = 1).

d) Montrer que J = {j",v = 0,1,2,3} := (co,7= 0¥ ) sont les composantes d’'un
quadrivecteur J, dit de densité de courant, si la charge électrique est invariante
sous les transformation de Lorentz.

e) Montrer que les équations inhomogenes de Maxwell imposent I’équation de conti-
nuité
= 4+V.7=0. (11)

f) Ecrire cette équation en utilisant le quadri-vecteur J. Obtenir cette équation di-
rectement & partir de (8)).

Nous avons vu en PC4 que les équations homogénes de Maxwell — sont satis-

-,

faites si F},, résulte d’'un potentiel A = (A°/c, A) selon
Fu =0,A, —0,A,. (12)
Nous avons vu que A est défini a la dérivée d’une fonction arbitraire prés
A — A+ Vy. (13)

Nous avons vu aussi que pour fixer cette liberté de jauge, on impose une contrainte.
Une contrainte invariante de Lorentz est la jauge de Lorenz

9 A" =0. (14)

g) Montrer que dans cette jauge les équations de Maxwell inhomogénes deviennent

OA = /J'OJ7 (15)

1 822 — A est 'opérateur d’Alembertien.

kS P nw — L O~
ou O:= 0,0 = 55;



1.2. Le pendule double

\AS

1.2. Le pendule double

On veut analyser la dynamique d’un pendule double placé dans le champ de gravi-
tation terrestre. Ce pendule est constitué de deux masses reliées par des cables rigides
de masses négligeables (voir fig|1.2)).

a) Ecrire le lagrangian du systéme. En déduire les équation d’Euler-Lagrange.

b) Sous I'hypothése d’un angle initial 6y suffisamment petit, écrire les équation du
mouvement dans I’approximation des petits déplacements.

¢) Résoudre les équations du mouvement. On suppose les condition initiales suivantes

01(0) = 6, 62(0) = 0 et 6;(0) = 62(0) = 0.

1.3. L’'atome d’hydrogénoide

On considére un atome Hydrogénoide, obtenu en arrachant & un atome tous ses
électrons sauf un. Ces atomes se comportent comme un atome d’Hydrogéne avec un
noyau de charge électrique réduite Z > 1.

L’électron est donc soumis au potentiel

V(r) = (16)
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FIGURE 1. — manuscrit de I'article de Niels Bohr de juillet 1913 (avec la permission
de I’« Archive Niels Bohr », Copenhague)

a) Donner I'expression du Lagrangien du systéme en coordonnées sphériques
b) Obtenir les équations d’Euler-Lagrange.

¢) Montrer I'existence de quantités conservées. Interpréter.

1.4. Pendule sphérique

On considére une masse m attachée a 'extrémité d’une tige rigide de masse négli-
geable, I'autre extrémité étant fixe par rapport au laboratoire. La longueur de la tige
est R. On note ¢ la colatitude (le pole de la sphére étant choisi a la verticale de son
centre) et 0 la longitude (cf. figure [2)).

FIGURE 2. — Schéma d’un pendule sphérique et photographie d’'un manége fonction-
nant selon le principe du pendule sphérique.

a) Ecrire le Lagrangien pour le pendule sphérique.



1.4. Pendule sphérique

b) En déduire que ¢, définie sur la figure [2 est une variable cyclique. Quelle est la
quantité conservée associée 7 Trouvez ’autre quantité conservée.

¢) Montrer que I'angle 6 satisfait une équation de la forme

db

— = f(0,E, E 17
5 = [0 Bv. Es) (17)
ou f est une fonction de 6 que I'on déterminera et de deux constantes du mouve-

ment Fq et Fs que 'on interprétera.



10. DM?2 : Second devoir & la maison



2. Second devoir a la maison (2012)

Relativité restreinte (PHY 431)
Pierre Vanhove

Devoir & la maison

a rendre en PC 7 (19/12/2012)

Devoir donnée en 2012

2.1. Equation de Maxwell et sources

Le rang de covariance d’un tenseur est augmenté d’une unité par 'action de l'opé-
rateur 0 de « composantes » {0y, = 0,1,2,3} = (%, 6) Le tenseur métrique (7,
ou son inverse nt) et le tenseur antisymétrique de Levi-Civita (€, ou e**?? avec
0123 — 1 = —ep123) peuvent aussi étre utilisés pour engendrer de nouveaux tenseurs
ou scalaires (invariants) & partir de tenseurs préalablement définis.

Si l'on considére le tenseur de Faraday F décrit le champ électromagnétique. Ses
composantes F),,, forment la matrice suivante :

0 E,/c Ey/c E./c
—E;/c 0 B, -B, (1)
~E,Je -B. 0 B, |’
~E./c B, -B, 0

Fy =

alors
Pl =7 g F,,. (2)
a) Montrer 'équivalence
Fl=0<+= 0,F,,+ 0y Fp, + 0pF =0 (3)

On a vu en PC5 que cette équation implique les équations de Maxwell suivantes

V-B = 0 absence de monopéles magnétiques (4)
- - 0B
V x E+ e 0 loi de Faraday (5)
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b) Vérifiez les expressions des invariants relativistes du champs électromagnétique

E?
WO Pl = 2 oy — B2 (6)
c
vpo 8= =
P EFy = ——E-B (7)
c
¢) Montrez que I’équation
O F™ = po j”, (8)
implique les équations de Maxwell avec sources
V-E = 2 loide Gauss 9)
€0
- 10E
V x B-— 2o po7 loi d’Ampére (10)

ol o et jsont les densités de charge et de courant (rappel : pgegc?® = 1).

d) Montrer que J = {j¥,v = 0,1,2,3} := (co,7= 0¥ ) sont les composantes d’'un
quadrivecteur J, dit de densité de courant, si la charge électrique est invariante
sous les transformation de Lorentz.

e) Montrer que les équations inhomogeénes de Maxwell imposent I’équation de conti-
nuité

= 4+V.-7=0. (11)

f) Ecrire cette équation en utilisant le quadri-vecteur J. Obtenir cette équation di-
rectement & partir de ([24)).

Nous avons vu en PC5 que les équations homogénes de Maxwell dans , ou de
maniére équivalente — sont satisfaites si F},, résulte d'une forme de potentiel
A = (4% ¢, A) selon

Fu=0,A, —0,A,. (12)

Nous avons vu que A est défini & la dérivée d’une fonction arbitraire prés
A — A’ +Vy (13)

Nous avons vu aussi que pour fixer cette liberté de jauge, on impose une contrainte.
Un contrainte invariante de Lorentz est la jauge de Lorenz

D A" =0. (14)



2.2. Effet de seuil

g) Montrer que dans cette jauge les équations de Maxwell inhomogénes deviennent

OA = po J, (15)

822 — A est I'opérateur d’Alembertien.

N - w— 1 07
ou O:= 00" = 55

2.2. Effet de seuil

On considére la réaction de désintégration d'un pion 7~ sur un proton p™ considéré
au repos dans le repére du laboratoire

7 +pt = KO+ A° (16)

Le méson pion 77—, composé par la pair de quark #@d, a une masse m..— ¢ = 140 MeV.
Le baryon proton, composé des trois quarks uud, a une masse m,,+ c? =938 MeV. Le
méson kaon K, est une superposition des états liées des pairs de quarks d5 et ds. Il a
une masse de mgoc? = 498 MeV. Finalement, le baryon A°, composé des trois quarks

uds, a une masse de myo = 1116 MeV.
a) Calculez ’énergie de seuil du pion pour la réaction puisse avoir lieu

Dans une expérience ol le pion a une énergie cinétique incidente de 2.5 GeV, le baryon
A” est observé avec une énergie cinétique de 0.6 GeV, et dans une direction a 45° par
rapport au mouvement du pion. On rappelle que 1 GeV= 10> MeV.

b) Calculez le facteur Y™ dans le repére du centre de masse.

c) Calculez I'énergie cinétique du kaon K° dans le repére du laboratoire et du centre
de masse.

2.2.1. Contexte historique et expérimental

Depuis leur découverte en 1947 les Kaons ont été une source d’information im-
portante sur la nature des interactions fondamentales. Ils ont joué un réle important
dans la compréhension du modéle des quarks. Les Kaons portent un nombre quantique
d’étrangeté S, induit par Murray Gell-Mann (Nobel 1969) et Kazuhiko Nishijima. Ils
introduisirent ce nombre quantique pour expliquer la facile production des Kaons
et leur désintégration plus lente que ce qui est attendu compte tenu de leur masse.
Ce nouveau nombre quantique d’étrangeté est postulé étre conservé lors des collisions
(comme pour celle donnée ci dessus), mais pas lors de la désintégration de la particule.

Un autre particularité du Kaon neutre K est d’avoir une antiparticule violant la
symétrie de parité. La Kaon court K3 = (d5 + sd)/v/2 a un temps de vie de deux
ordre de grandeur inférieur & celui du Kaon long K? = (d5 + sd)/v/2. Ces particules
sont leur propre antiparticule.

C’est en utilisant des Kaons qu’a été découverte de la violation de la symétrie
CP, responsable pour I'asymétrie entre matiére et antimatiére dans l'univers. Cette
expérience a regu le prix Nobel en 1980.



2. Second devoir a la maison (2012)

2.3. Pendule sphérique

On considére une masse m attachée a 'extrémité d’une tige rigide de masse négli-
geable, I'autre extrémité étant fixe par rapport au laboratoire. La longueur de la tige
est R. On note ¢ la colatitude (le pole de la sphére étant choisi a la verticale de son
centre) et 0 la longitude (cf. figure (1.

FIGURE 1. — Pendule sphérique

a) Ecrire le Lagrangien pour le pendule sphérique.

b) En déduire que ¢ est une variable cyclique. Quelle est la quantité conservée asso-
ciée ? Trouvez 'autre quantité conservée.

¢) Montrer que l'on a

0
% = f(97E17E2) (17)

ou f est une fonction de 6 que I'on déterminera et de deux constantes du mouve-
ment Fq et Es que I'on interprétera.
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3. DM2 Second devoir a la maison

Relativité restreinte (PHY 431)
Pierre Vanhove
Devoir a la maison

a rendre en PC7 (20/12/2013)
donné en 2013

3.1. Equation de Maxwell et sources

Le rang de covariance d’un tenseur est augmenté d’une unité par 'action de l'opé-
rateur 0 de « composantes » {0y, = 0,1,2,3} = (%, V). Le tenseur métrique (M
ou son inverse ) et le tenseur antisymétrique de Levi-Civita (€, ou e**?? avec
e0123 = 1 = —¢q193) peuvent aussi étre utilisés pour engendrer de nouveaux tenseurs
ou scalaires (invariants) a partir de tenseurs préalablement définis.

Si l'on considére le tenseur de Faraday F décrit le champ électromagnétique. Ses
composantes F),, forment la matrice suivante :

0 E*/c EY/c E?/c

| -E%/c O B, -B,
Fu = —EY/e —B, 0 B, | (1)

~E*/c B, -B, 0

alors
FH = ghvpo 8VFM. (2)

a) Montrer 'équivalence
Fl=0<+= 0,F,,+ 0y Fp, + 0pF =0 (3)

On a vu en PC5 que cette équation implique les équations de Maxwell suivantes

V-B = 0 absence de monopéles magnétiques (4)
- - 0B
V x E+ e 0 loi de Faraday (5)

11



3. DM?2 Second devoir a la maison

b) Vérifiez les expressions des invariants relativistes du champs électromagnétique

E?
M FyFpy = =2 = —B*|, (6)
c
vpo 8= =
P EFy = ——E-B (7)
c
¢) Montrez que ’équation
O™ = o 3", (8)
implique les équations de Maxwell avec sources
V-E = 2 loide Gauss 9)
€0
- 10E
V x B — 2o po7 loi d’Ampére (10)

ol o et jsont les densités de charge et de courant (rappel : pgegc? = 1).

d) Montrer que J = {j¥,v = 0,1,2,3} := (co,7= 0¥ ) sont les composantes d’'un
quadrivecteur J, dit de densité de courant, si la charge électrique est invariante
sous les transformation de Lorentz.

e) Montrer que les équations inhomogeénes de Maxwell imposent I’équation de conti-
nuité
= 4vV.7=0. (11)

f) Ecrire cette équation en utilisant le quadri-vecteur J. Obtenir cette équation di-
rectement & partir de ([24)).

Nous avons vu en PC5 que les équations homogénes de Maxwell — sont satis-
faites si F),, résulte d'un potentiel A = (A%/c, A) selon

F,., =0,A, —0,A,. (12)
Nous avons vu que A est défini a la dérivée d’une fonction arbitraire prés
A — A +Vy. (13)

Nous avons vu aussi que pour fixer cette liberté de jauge, on impose une contrainte.
Une contrainte invariante de Lorentz est la jauge de Lorenz

D A" =0. (14)

12



3.2. Géodésique sur la sphére

g) Montrer que dans cette jauge les équations de Maxwell inhomogénes deviennent

OA = po J, (15)

822 — A est I'opérateur d’Alembertien.

N - w— 1 07
ou O:= 00" = 55

3.2. Géodésique sur la sphére

On veut déterminer le chemin le plus court entre deux points sur une sphére de
rayon R.

a) Si s est un parameétre le long de la courbe exprimer la longueur du chemin selon
SB .
1= [ 5 ds. (16)
SA

b) Afin de tenir compte de la contrainte que le mouvement s’effectue sur une sphére
de rayon R, on modifie cette fonctionnelle en introduisant un multiplicateur de
Lagrange u(s), et 'on cherche & minimiser

- | P s) — () g ) ds (17)

Donner 'expression de h(7, 7 s) = (7,7 s) — u(s) g(F, 7 s).

¢) En déduire que le chemin le plus court est un grand cercle passant par les points
Aet B.

3.3. L’atome d’hydrogénoide

On considére un atome Hydrogénoide, obtenu en arrachant & un atome tous ses
électrons sauf un. Ces atomes se comportent comme un atome d’Hydrogéne avec un
noyau de charge électrique réduite Z > 1.

L’électron est donc soumis au potentiel

Ze?
V(r) = (18)

dmegr

a) Donner I'expression du Lagrangien du systéme en coordonnées sphériques
b) Obtenir les équations d’Euler-Lagrange.

¢) Montrer l'existence de quantités conservées. Interpréter.

13



3. DM?2 Second devoir a la maison

Bl ()  Ges

’ ;’ 2 2
o Jx o ec-—r - # .9 89
Jf; { g vt 4 ) A -ay3
PTE _‘{l, ra 3G 1y 2
W%«u e a8 e 7—3‘;)‘;?'[077.

FIGURE 1. — manuscrit de I'article de Niels Bohr de juillet 1913 (avec la permission
de I’« Archive Niels Bohr », Copenhague)

3.4. Pendule sphérique

On considére une masse m attachée a I'extrémité d’une tige rigide de masse négli-
geable, 'autre extrémité étant fixe par rapport au laboratoire. La longueur de la tige
est R. On note ¢ la colatitude (le pole de la sphére étant choisi a la verticale de son
centre) et 0 la longitude (cf. figure [2)).

FIGURE 2. — Schéma d’un pendule sphérique et photographie d’'un manége fonction-
nant selon le principe du pendule sphérique.

a) Ecrire le Lagrangien pour le pendule sphérique.

b) En déduire que ¢, définie sur la figure [2 est une variable cyclique. Quelle est la
quantité conservée associée 7 Trouvez 'autre quantité conservée.

14



3.4. Pendule sphérique

¢) Montrer que l'angle 6 satisfait une équation de la forme

do
a = f(eaEbEZ) (19)

ou f est une fonction de 6 que I'on déterminera et de deux constantes du mouve-
ment E; et Fo que I'on interprétera.
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4. Corrigé PC 1 : Transformations de
Lorentz

Relativité restreinte (PHY 431)
Pierre Vanhove
PC du 4 novembre 2014

4.2. Le probléme d’Einstein

Oui bien sir, il se verra. Son image dans le miroir sera la méme quelque soit sa
vitesse par rapport au sol.

Le coureur ne peut pas de déplacer & une vitesse supérieure ou égale & celle de la
vitesse de la lumiére. Donc méme avec une vitesse trés proche (mais inférieure) a celle
de la lumiére, la vitesse de la lumiére est la méme dans le repére inertiel du coureur.

C’est une conséquence des postulats de la relativité restreintes

e La vitesse de la lumiére est constante dans le vide

e Dans deux référentiels inertiels en mouvement relatif non accéléré, les lois de la
physique sont les mémes.

4.3. Contraction des longueurs et dilatation du temps

A une altitude inférieure a 35 000 m, les muons ont une énergie originelle moyenne

de 6 GeV.

a) L’énergie du muon est E = 6GeV = ymc? avec v = 1/(1 — %)'/? = 60 donc
v =cf = 0.999861 c.

b) En cinématique Galiléenne ARG = v 75 = 659.452m

¢) Dans le référentiel du détecteur la durée de vie est dilatée par les effets relativistes
selon 7 = y1p = 1.32107%s.

d) Dans le référentiel du détecteur nous avons maintenant Ah = v = yv 7y =
39567.1 m. Ce qui est supérieur & l'altitude moyenne originale des muons de 6 GeV.

e) Du point de vue du muon la distance a parcourir pour atteindre la Terre s’est
contractée suite aux effets relativistes.

19



4. Corrigé PC 1 : Transformations de Lorentz

/
A Ct ‘Ct '/,/
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FIGURE 1. — Diagramme de Minkowski

4.4. Simultanéité

On veut montrer qu'une transformation de Lorentz peut étre visualisée par un

diagramme d’espace-temps, ou diagramme de Minkowski, représenté en figure [T}

a)

20

Soit un référentiel R’ se déplacant & une vitesse v par rapport un référentiel R.

Les coordonnées du référentiel R’ sont reliées & celle du référentiel R selon

2’ = 7z~ fet) (1)
ct' = ~(ct— Bzx). (2)

L’axes (Oct') a pour équation x’ = 0 soit z = B ct et Paxe (Oz') a pour équation
ct’ = 0 soit ¢t = Px. La pente de 'axe (Ox') est tana = 3, et la pente de
laxe (Oct’) est tana’ = 1/8. Donc tana = 1/tana’. Ce que l'on constate sur le
diagramme puisque o = 5 —a.

Dans le référentiel R les rayons lumineux suivent la trajectoire x = ct représentée
par une ligne a 45 degré sur le diagramme. Dans le référentiel R’, I’équation est
' = ct’ ce qui donne la méme droite, traduisant I'invariance de la trajectoire de
la lumiére sous transformations de Lorentz.

Les lignes de simultanéité pour le référentiel R sont déterminées par 1’équation
ct =cste et représentées par des lignes horizontales. Pour le référentiel R’ les lignes
de simultanéité sont ct’ =cste et représentées par des lignes inclinées d’un angle o
par rapport a 'horizontale. Elles sont paralleles a axe (Ox').



4.4. Simultanéité

d) Dans le référentiel R deux événements sont simultanés si At = 0. Dans R’ on a

e)

alors cAt' = —yBAz. Si Az > 0 on peut avoir At’ < 0!

Si on dénote par €, et €. les vecteurs de base unitaires sur les axes (Oz) et (Oct)

respectivement. Et par €, et €. les vecteurs de base de norme €2 = €, - €,

€qp sur les axes (Ox') et (Oct’) respectivement. On a que €€y = €pt €y = €COS
S oS o a ,r .

et €y - Eop = €t - €y = €c0s(§ — @) = esina.

= gct’ :

La relation entre les intervalles mesurés dans les deux référentiels est

Az = ecosa Az’ + esinacAt’ (3)
cAt = esina Az’ + ecosacAt'. (4)

On en déduit pour les intervalles relativistes

As? = €*(cos® a — sin® ) As" (5)

2a =1+ tan® o on en déduit que

) _ 218
1+ B2

Comme tana = et cos™

As As” (6)

Le principe relativité impose que As? = As’? ce qui implique le facteur d’échelle

142
=\ (7)

€ vaut

!/ , /
CtA ‘ct . CtA ‘ct e
' s %
B | ‘B’ B ,’
e ’
e s
A y
/ /'/ / ’
Al TA e z i'd
ol s I 4 Ie% ’ l 4
L D
y , // C » L.
. @ T PLa¢"
P > . >
O 4/‘@

FIGURE 2. — (a) Dilatation de la durée cAt 4/ g vue dans le référentiel R, (b) dilata-

f)

tion de la durée cAtga vue dans le référentiel R'.

Nous cherchons la relation entre la durée cAt 4 g mesurée dans le référentiel R/,
représentée par Tarp/, et la durée cAtap dans le référentiel R, représentée par
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4.

Corrigé PC 1 : Transformations de Lorentz

Tap. La relation entre Typ et Ty g déduite de la figure (a) est
Tap =cosaTup (8)
en tenant compte du facteur d’échelle € on a donc que

cAt y g
cAtAB:ecosacAtA/B/:¢:70Am/3/ (9)

Vi- 3

4.5. Causalité

a)

22

Sur un dessin, on constate qu’un signal se propageant a une vitesse inférieure
ou égale a celle de la lumiére émis depuis l'origine, reste dans le céne du futur.
L’origine ne peut recevoir du passé que des signaux se propageant a une vitesse
inférieure a celle de la lumiére.

2 _ _mce?
= 5

La relation £ = ymc implique que si 8 = v/c > 1 et que l'on veut une

énergie donnée par un nombre réel, £ € R, alors m doit étre un nombre imaginaire
pur, m € iR.

Dans le référentiel R le signal de réponse a pour équation (ct,x) = (ct, Sct) avec
B = v/e. Léquation de cette trajectoire dans le référentiel R’ obtenue par une
transformation de Lorentz

e’ = A (1-pP)ct (10)
¥ o= A B-p)ct (11)
v , 1

po= o 0% ::W. (12)

La position de I'observateur au moment de la réception du signal mesurée dans le
référentiel R’ est 2’ = L' =~/ (8 — ') ¢t donc la durée de propagation du signal

dans le référentiel R’ est ct’ = 15__5 [;53 L'. Le temps de réception dans R’ est donc

cette durée pour le temps de propagation du signal vers l'origine du référentiel R’

, o U 28-p(14 5%
L=t G =" 56-p)

L. (13)

i) Si B < 1, le signal se propage moins vite que la vitesse de la lumiére, alors
¢TI’ > 0 pour 0 < v < v, la derniére condition est nécessaire pour que le
signal puisse rattraper 'observateur en mouvement.

ii) Si 8 =1, le signal se propage a la vitesse de la lumieére, alors ¢I” = 2L pour
toutes valeurs v’ < c.

iii) Si B > 1 pour v/ > 2v/(1 + v?) le temps de réception ¢I” < 0 ce qui signifie
que la réponse a été regue avant d’avoir été émise.



5. Corrigé PC 2 : Composition des
vitesses et aberration relativiste

Relativité restreinte (PHY 431)
Pierre Vanhove
PC du 18 novembre 2014

5.1. Composition des vitesses

a) La vitesse réduite du mobile M dans le référentiel R est donnée par
EM/R = (dz/cdt,dy/cdt,dz/cdt) et dans le référentiel R’ par BM/R/ =
(da' Jedt', dy' [edt’,dz" /edt’). Ces vitesses réduites sont reliées par une transfor-
mation de Lorentz. On suppose que le mouvement du mobile est arbitraire dans
le référentiel R’. On suppose aussi que les axes R’ sont paralléles a ceux de R.
Comme le mouvement de R’ se fait selon 'axe (Ox) du référentiel R nous avons

cdt = (vrir)(cdt’ + Brijrda’) (1)
dr = ~(vgyr) (dz' + Br/jgedt’) (2)
dy = dy (3)
dz = d7. (4)

On en déduit la loi de composition des vitesses

dx 5%1/72' + bR/ /R

T = = 5
ﬁM/R cdt 1+ Bﬁr/nﬁjr\/t/R’ ?
g 1 P (©)
M/R cdt  y(Brir) 1+ B%//RB%/R’
dz 1 Bwyr
B = - - !
M/R cdt  Y(Briyr) 1+ Bro g B rs "

b) Si le référentiel R” est en mouvement par rapport a I'axe (Ox), nous avons alors
en appliquant le raisonnement précédant la loi de composition des vitesses

ﬁ%///R/ + B’%’/’R

(8)

52: " - - = .
R /R 1 + /B'R’/RBR"/R’

23



24

Corrigé PC 2 : Composition des vitesses et aberration relativiste

Pour les rapidités nous avons

tanh ¢ o tanh ¢R///R/ —+ tanh ¢R//R (9)
RIYR T 1+ tanh d)’R’/R tanh ¢R”/R’

= tanh(¢R///R/ —+ ¢R’/R) . (10)

On en déduit donc que les rapidités sont additives ¢prr /g = drr/rr + Or//R-

Le facteur k s’exprime simplement selon

k _ 1+ BR’/R _ cosh ¢R’/R + sinh QS'R’/'R _ e‘z’R’/R (11)
R[R 1-— /BR’/R cosh (ZSR’/R — sinh (2572//72 .

Donc la composition des vitesse revient a la multiplication des facteurs kr» /g =
krim R kR /R

Dans le cas général on part des transformations de Lorentz
iy = ~(di| + Bcdt') (12)
P, = dr) . (13)

Donc la vitesse du mobile par rapport au référentiel R est donnée par

(Bamymr)| + Brym

(Baasm)) = = (14)
L+ Bpmywrr - Briyr
> (BM/R’)L
(Bumyr)L = = = : (15)
Y(Br /=) (L + Bryr - Briyr)
Si le mobile est aminé d’une vitesse ¢ par rapport au référentiel R’ alors ||6 Rl =
1. Si on considére alors
. 1 - - ((Baayrr)1)?
15pyml” = = = (((5M R+ OryR) + —5 ) | -
/ (1+ Brmyr - Bryr)? IR / Y2 (Br//r)
. ) (16)
Comme ((Bp1/r))* + ((Bamyr/)L)? =1 on en déduit que
= s 1+ 25/\/1/73/ : ER’/R + (1 - ((EM/R’)L)Q) (Br/r)?
1Bvmll? = T MR . oan
(1+ Bamyr - Bryr)
et en utilisant ((5/\4/72’)\\)2 (572//72)2 = (EM/R’ -BR//R)2 on conclut que
1Bpmyrll® =1 (18)

Ce qui montre que le mobile se déplace & la vitesse de lumiére par rapport au



5.2. Effet d’aberration relativiste

référentiel R.

5.2. Effet d’aberration relativiste

5.2.1. Effet torche

FI1GURE 1. — Vue de la source lumieuse en mouvement par l'origine O du référentiel
R. L’angle 6’ est celui sous lequel est vu I'objet par un observateur au
repos dans R’.

a) Dans le référentiel R la vitesse des rayons lumineux est donnée par

vy = ccosf (19)

vy = csinf. (20)
Dans le référentiel R’ on a

vl = ccost (21)

v, = csinf . (22)

La relation de composition des vitesses donne

/ 0/
vy = ccosb = Vs t:i == :VB (23)
1+ % 14 cost'p
V! ing
vy = csinf = Y =c o : (24)

7(1"’_%0) v (1+ Bcosb’)

b) Dans la limite Galiléenne, v — 0 alors  — 0, leffet d’aberration géométrique
disparait, I’angle de vue 6 pour un observateur en mouvement correspond a I’angle

25
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Corrigé PC 2 : Composition des vitesses et aberration relativiste

de vue ¢ pour un observateur fixe par rapport a ’objet

cosf) = cost (25)
sinf = sin¢, (26)

Dans la limite ultra-relativiste, 8 — =£1,

cos@ +1
0 ~ ——— =41 27
o8 1=+ cost 27)
) sin 6’
sinf ~ — 07 L, (28)

v (1 £ cos®)

Lorsque la source s’éloigne 3 ~ 1, alors 8 ~ 0 et lorsque la source s’approche
B8 ~ —1, alors § ~ m. Les rayons lumineux sont concentrés dans la direction de
propagation de la source. D’olt le nom d’effet torche.

5.3. Le paradox du meétre incliné

a)

26

On a ici un exemple d’aberration géométrique. On considére qu’a l'instant ¢ =
t’ = 0 ou le centre de la régle est a lorigine des référentiels du laboratoire et du
mobile. Pour I'observateur dans la fusée les rayons lumineux venant de I’arriére de
la régle arriveront plus tard que ceux de 'avant de la régle. Ainsi il verra la régle
inclinée au dessus de I'axe (Ox’) dans le sens de son mouvement.

On applique les résultats de ’exercice a extrémité droite A de la régle. Dans
le référentiel R’ du mobile la loi de composition des vitesses donne

tan ¢’ := ﬁ—y, = L (29)
g (BT +B)y
mais comme la régle est parallele a Paxe (Ox) alors les rayons lumineux partant
de A suivent un trajectoire avec 5% = 0 d’ou

tan ¢ = 51 (30)

Il n’y aura pas de collision car dans le référentiel du mobile le métre n’est pas
contracté mais la plaque est inclinée avec le coté droit vers le haut.



5.4. Un conducteur relativiste

5.4. Un conducteur relativiste

a) Comme on s’approche du feu on applique la formule de I'effet Doppler relativiste
Vobs = Vsource/ (7 (1 — B cos8)) avec 6§ = 0 donc

Vrouge 1+
Dyert = (77—~ — ——, Vrouge 31
ST Rl e ey

Comme v = ¢/\ alors

1+ /B _ Arouge (32)
1-— B Avert
Ce qui donne avec Arguge = 700 M et Ayery = 546 nm
B=024c~7310m/s. (33)
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6. Corrigé PC 3 : Principes
variationnels, équations
d'Euler-Lagrange

Relativité restreinte (PHY 431)
Pierre Vanhove
PC du 25 novembre 2014

6.1. Le pendule simple

Le lagrangien du pendule simple est donné par la somme £ 4+ Lo du lagrangien du
point de masse m;y
Ly = % 2 (1)

et la masse du pendule a pour coordonnées xg = = + Ising et yo = —lcosy (si
I'on suppose que le rail & pour position y = 0), le pendule est soumis a la force de
gravitation de potentiel Vo = mgys (puisque l'orientation de y est vers le haut) donc
puisque Lo =15 — V5

my . .
Ly = 7( 5+ 15) — mgys (2)
= %:&2 + % (P + 2lip cos ) + magl cos o (3)

6.2. Temps propre et équations de Euler-Lagrange
a) La densité de Lagrangien est donnée par L(z*,i*) = n,,c"%". Les équations
d’Euler-Lagrange s’écrivent

d OL(zH,i#) _ OL(at, i) @

ds O+ ozt
soit
d .
o () =0 )
donc
it = a¥ (6)
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6. Corrigé PC 3 : Principes variationnels, équations d’Euler-Lagrange

est constante ce qui s’intégre en
zt = ats +af . (7)

Ceci est la représentation paramétrique d’une mouvement rectiligne uniforme
puisque

¥ =ct = as+b° (8)
I = as+b (9)
ce qui implique
t—b0 o
7=al +5. (10)
ap

b) Le temps propre est donné par cdr = /n,@#&" ds. La densité de Lagrangien est
donc £ = \/na#i". Les équation d’Euler-Lagrange donnent

a2 ) _, (11)
ds \ /it |
c’est-a-dire
ok
\/ Mtk a?

est constant. Ceci implique que 7,,a#a” = 1, et que @ est le vecteur constant a*
multiplié par une fonction arbitraire de s

=a* (12)

= a’ p(s). (13)

En faisant un changement de variable sur la paramétre s tel que ds'/ds = ¢(s)

alors
dz*

ds’
ce qui est la cas étudié dans la question précédente, ou 'on a montré que cela
implique un mouvement rectiligne uniforme.

at (14)

On constate bien siir que s’ est le temps propre car

[ dxt dzv
f(S) =A\/ Nuv ds dis (15)
[ dxt dzv
ds' = ds nuy%d—i = \/Nudztdz” (16)

ce qui permet de conclure a 'identification entre s’ et le temps propre.

de sorte que
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6.3. Formule de Beltrami

6.3. Formule de Beltrami

On considére une fonctionelle de la forme

uty) = [ Fly(o). i), a)da (17)

ot y est une fonction de x et y := dy/dz. On cherche les configurations y(z) qui
rendent cette fonctionnelle extrémale, zg et x1 étant fixées.

a)

On écrit que

dU =U(yo +n) —U(yo) =0. (18)
C’est-a-dire que
0 = [ (Flon g+ i) — Fl. o)) do (19)
)
o1 oF oF
- n2E ﬁ.> s (20)
/zo < gy 0y
o SOF  d 8F> [ 8Fr1
/:CO (8y dx Oy oy .

Pour obtenir la derniére ligne nous avons procédé & une intégration par partie.
Avec pour conditions aux limites que les positions xq et 1 sont fixées on a n(zg) =
n(z1) = 0 alors

o OF  d OF
dZ/IZOZ/ <—> n(z)dx, (22)
- Oy dx 0y
comme cette équation est valable pour tout choix de la fonction n(x) alors
F doF
ordor_, -
Oy dx Jy

On aurait aussi pu travailler avec d’autres conditions aux limites oul les extrémités
sont libres mais les variations de F' sont nulles 0F(z)/0y = 0 pour z = zg et
r = .

On considére

dE  d ([ .OF dF
dx_d:z:<yﬁy>_d:z' (24)
Puisque 0F/0x = 0 alors
F F F
dF OF .  OF . (25)

dr "oy ey
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Ainsi
dE _ 0P dOF (or  oF -
e Yoy "Varay  \ay ¥ g7
. { doF OF
= gl—=-—=]. (27)
dx 0y Oy
Qui est nul par les équations d’Euler-Lagrange pour F.
c¢) Le lagrangien du systéme est donné par £ = meQ — V(x). Posons p = % = mi.
Alors les équation d’Euler-Lagrange impliquent que fl—f = g—ﬁ = —V’(x). On voit

que p ainsi définit est 'impulsion. La fonctionnelle de Beltrami est donnée par

)
ma
E:p$—£:T+V(;U) (28)
ce qui est la somme de I’énergie cinétique et potentielle de la particule. La formule
de Beltrami assure que dE/dt = 0 ce qui est la condition de conservation de
I’énergie.

6.4. Brachistochrone
a) On écrit la conservation de I'énergie. L’énergie initiale est £ = mgh. A une altitude

z lobjet a une vitesse v alors E = m2”2 +mgz. Comme v? = (dz/dt)? 4 (dz/dt)? =
(1+ (dz/dx)?) (dz/dt)?* On trouve que

2
% <‘£) (14 22) = mg(h — 2) (29)
Zf:mgﬁ_;. (30)
B N R
rey= [ a= | V290 — 2 1)

b) On constate que f = ,/291(4];23_2 2y he dépend pas de x. Donc est nulle la variation

ol Z = dz/dx. Ainsi

Donc

par rapport & = de la fonctionelle de Beltrami

. of
5—,2&7]‘". (32)

Puisque

of 2
0z \f2g(h—2)(1+ %)

(33)

32



6.5. Caténoide

on déduit que
1

V1+Z o

On peut réécrire cette équation

2g(h — 2) €. (34)

1

1+42=— K:=—=.
+z h—2z’ 2gE?

(35)

En posant Z = tan(f/2), comme 1 + 2 = (cos §)72. Alors z = h — K cos?(0/2) =
h — K(1+ cosf)/2. Puisque

dz dz df
= —— = — — 36
T dr  dfdx (36)
alors p 9
d—z = K cos? 7 (37)
En intégrant ces équations on trouve
K
xr = o+ 5 (0 + sin 0) (38)
K
z = h—E(l—kcosG). (39)
Les conditions initiales sont pour § = —m alors z = h et x = x9 — % = 0 donc
To = % Une représentation graphique est donnée en ﬁgure

c¢) Considérons a nouveau la fonctionnelle temps T' = [ f dz de I'équation . Alors
avec le changement de variable considéré on trouve que

1
Ainsi 0 g
T — final — Yinitial _ 71— ' (41)
2g& 29€

Le résultat ne dépend que de la grandeur conservée £ qui est une constante indé-
pendante de x, ce qui signifie que le temps de descente est indépendant du point
d’ott 'objet est laché.

6.5. Caténoide

a) Clairement la surface de la bulle de savon est donnée par

h
S = /_ 2mr(:) de(2), (42)
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20
15
10
0.5

2 4 6 8

FIGURE 1. — plusieur arches représentant (z(6),z(0)) pour 6 € [—m, 4.

avec

dl(2)* = dr? +d2? = d2* (1 + <Zz>2) : (43)

Posons 7 = dr/dz. Donc la surface est donnée

h
S=2r /_hr(z)\/l +7(2)?dz. (44)

b) L’équation d’Euler-Lagrange est d(0L/07)/dz = dL/dr avec L = 2w r /14 72 ce

qui donne
d rr \/7
—— = /1 + 72, 45
dz /1 + 72 (45)
ce qui implique que
rit —i? —1

Tt (46)

Comme la fonctionnelle est indépendante de z alors est conservée la quantité de

Beltrami o
r
" or V1472 ")

¢) En combinant ’équation et I’équation d’Euler-Lagrange on trouve que

i = % (48)
Donc . .
r(z) =« exp(?) + 5 exp(—E) . (49)

On souhaite que 7(h) = r(—h) = R et que r(—z) = r(z) pour tout —h < z < h,
on en déduit que 7(z) = o cosh(z/K). En réinjectant cette expression dans la
relation de conservation on trouve

12 2

2 o . 2Z_Oé 9 2
].+T —1+ﬁsmh ?—ﬁcosh E (50)
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6.5. Caténoide
ce qui implique que o = K. L’équation d’une caténoide est donc
z
= K cosh — . 51
r(z) cosh - (51)
La condition que pour z = +h le rayon vaut celui des cercles donne
R = K cosh h (52)
= K cosh — .
K

Pour K — 0 et K — 0o le membre de droite tend vers +oo. Il y a un minimum
pour tanh % = % soit h ~ 1.9968 K. Il y a un donc un rayon minimal, pour que la
caténoide puise existe R > hsinh % Pour R satisfaisant cette relation ’équation
a deux solutions pour K comme le montre le graphique ci-dessous

~

2 4 6 8 10

FIGURE 2. — Représentation de 'équation R = K cosh(h/K)
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7. Corrigé PC 3 : Espace—temps et

formalisme quadri-dimensionnel

donnée en 2012 et 2013

Relativité restreinte (PHY 431)
Pierre Vanhove
PC du 22 novembre 2013

7.1. Quadri-vecteurs vitesse et accélérations

Le quadri-vecteur accélération A est défini comme la dérivée du quadri-vecteur

vitesse V par rapport au temps propre 7 : A = dV/dr.

a)

Par définition V := dr/dr comme dr = (cdt, dF) et en utilisant la relation entre le
temps propre et le temps ¢t dr = dt/~ on en déduit que V = v (¢, ¥). La norme de
ce quadri-vecteur V2 = (V)2 — (V12 — (V2)2 — (V3)2 =12 (c® — %) = 2.

L’accélération est définie par A = dV /dr on en déduit que

dV dvy dvy_ -
A=Y (D . 1
avec J 3
A A
E:Cﬁv-a. (2)

Pour calculer A -V on peut procéder de deux fagons. La premiére est de différentier
V2 = ¢? par rapport a 7 pour obtenir A -V = 0. Ou de faire le calcul direct a
partir des composantes

d i S
AV = (P =) —7a- ) (3)
dy ¢
_ 2,/ v o o 4
(g =09 (4)

On définit le quadri-vecteur d’énergie-impulsion P = mV = ym(c, ¥). On a que
P-P = m?V? = m2c?. Par définition les composantes du quadri-vecteur impulsions

sont P = (£/c,ym¥) on a donc que & = ymc?.
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7.

d)

Corrigé PC 3 : Espace—temps et formalisme quadri-dimensionnel

Puisque A -V = 0 on en déduit que A - P = 0 donc P? est une constante. On
en déduit que £2/c? — v?m2u? est une constante. Nous avons vu & la question
précédente que cette constante vaut m2c?. Donc £2/c? = m2c2(1 + %52 /c?) =
m2c(1 4 F2/(1 — 7)) = yPm?e?.

Ces relations sont trés importantes pour obtenir des quantités conservées en ci-
nématique relativiste (chocs et diffusions entre particules, créations de particules,

).

7.2. Cylindre en rotation

a)

38

La transformation de Lorentz entre R et R’ est donnée par

(=}

' = y(ct - Bx)
¥ = y(@—PBct)

~ o~~~
oo
= D — T

9

Z = z,

donc dans R’ nous avons (y')? + (2/)? = y? + 22 = p? donc le cylindre a toujours
le rayon p dans le référentiel R’. La longueur est contractée car si dans R on a
L=xp— x4 ou A et B sont les extrémités du cylindre. Dans R’ on a

L' =25 — 2y =~(xp — x4 — Be(te —ta)) (10)
mais dans R’
c(tp —th) =0="(c(ts — ta) — Blap — ) (11)
donc I
L/:x/B—fo:')/(1—52)(.%_3—‘%14):;. (12)

Dans le référentiel fixe R un point marqué sur le cylindre a pour équation tempo-
relle
Pr = (x, pcos(wt), psin(wt)) . (13)

Avec les relation de changement de référentiel ¢t = v (ct’ + B2’) on a dans le
référentiel R’

Prs = (&, peos(wy (¥ + B2’ /¢)), psin(wy (¥ + B2’ /c)) (14)

On voit donc que le cylindre tourne maintenant a la vitesse angulaire wy et que
les points sont décalés d’'un angle o = wvyf/ec.



8. Corrigé PC 4 : Invariances et lois de
conservation ; théorie lagrangienne
relativiste

Relativité restreinte (PHY 431)
Pierre Vanhove
PC du 2 décembre 2014

8.1. Lagrangien du champ électromagnétique
a) Par définition F* = 9t AY — 9V A* donc

OPFM 4 GHFVP 4 ¥ FP1 (1)
= OP(OMAY — O AM) + OM(OV AP — BPAY) + B (DPAF — OFAP) =0,  (2)

ou l'on a utilisé que I*IPA¥ = JPOH A".

b) Par définition de la métrique (—, —, —) on a que w; = —w’ pour i = 1,2,3. Ainsi
le produit scalaire ¥+ @ = — Z?:l v'wt = viw;.

c¢) Par définition

1 _ .
Wi =5 eijk:f]k = fijkajvk- (3)
Le produit vectoriel entre deux vecteurs Z et i est définit par
22 — 1By
Exg= |23y —aly3 | . (4)
2ly? — g2y

C’est-a-dire que (7 x §)" = Z?,kz:l eijkxjyk pour i = 1,2, 3. Donc les composantes
covariantes ‘ ‘

(@ x )i = —(F x §) = —epa’y” . (5)
On applique avec T = V = (0/0z" = 0; = —0") et i = ¥ pour obtenir w; =
(5 ).

7

d) On écrit les équations (1) en composantes
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8. Corrigé PC 4 : Invariances et lois de conservation ; théorie lagrangienne relativiste

En lisant les composantes de F'*¥ on constate que B; = %eiij ik ot Fi0 = E' Jc=
—F% On a ainsi que

1 1 EI1 B!
5306;”]'}7” + 56]”]'81? — iek”@]? =0 (7)
c’est-a-dire o
cd° By, + €4ij0' B = 0 (8)

comme ekij(‘)iEj = (6 X E) r d’aprés la question précédante et puisque cd° = 9/0t
on en déduit que

V x E+ %f =0. (9)
On examine les équations
OFIF 4 9T Fr 1 9P F = 0 (10)
ce qui implique que
%eijk (0'F7* + 0P 1 0" F'T) = 0 (11)
c’est-a-dire
B;+ B +9"B,=V-B=0. (12)
e) En supposant que
B = Vx4 (13)
E = —V¢— % : (14)

On vérifie que les équations de Maxwell sont satisfaites
VA (VxA) =30V x A== 3 & (qu'at) =0, (15)
i=1 i, k=1

car eijkaiaj AF = 0 puisque € est antisymétrique en les indices i et j et les dérivées
partielles commutent. Egalement

. - 0A . . . OVxA 08B
=0

f) Ajoutant a A la quantité ﬁx laisse invariant le champs magnétique B car V x
(Vx) = 0. Pour FE on considére la variation de la définition sous la transformation
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8.1.

Lagrangien du champ électromagnétique

de jauge
= -0y O0Vx
0 =-V—— 4 —==0. 17
o ot 1)
g) Un calcul direct donne que
3 . 3 ..

F“VF}W = QZFOZFOZ‘—F ZFUFZ‘]' (18)

i=1 ij=1

i

-,

E2

On constate ainsi que =5 —
C

B2 est un invariant relativiste.

h) En réinjectant les expressions pour les champs électrique et magnétique en fonction
des potentiels, le lagrangien prend la forme

1 1
2up | 2

o

o\ 2
(% aA) —(VxA)?| —op+7-A. (20)

On calcule les variations du lagrangien par rapport aux potentiels

oL
9
oL
oA

On calcule aussi

= TV

_ j_’—*ﬁ
Ho

9L _

¢

oL 1

aj M002

: (% + %?) —0 (21)
x (V x A). (22)
(23)

oA -
<8t + w) . (24)

On a donc I'équation d’Euler-Lagrange pour ¢

qui donne

d oL

dt 9¢

—ﬁ-(ﬁgﬂ

_oc

= 9 (25)

aA\
at> = HoC 0, (26)

En utilisant la définition du champ électrique en fonction des potentiels on constate
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que ’équation donne

VE=pcto="2 (27)
€0
Pour le potentiel vecteur A
d oL 0L
—— = (28)
dt p4 0A
implique que
. oo oo 1[04 06
A+ =S| — — | = poJ- 2
V x (V x )+02(8t2 +v8t> po] (29)

En utilisant la définition du champ magnétique en fonction des potentiels on
constate que ’équation donne

1 0E

NV X B — = = 7. 30

En utilisant la condition de jauge V-A+ C%%f = 0 on déduit que les potentiels

satisfont une équation d’onde

19
(A‘c?at2>¢ = e o
10%\ » -

Avec A = V2 le Laplacien. Le permittivité du vide ¢y et la perméabilité du vide
Jo sont reliées par la relation pgegc? = 1.

i) Sous la transformation de jauge F*F),, est invariant. Donc pour toutes fonction
x(t,Z) on a

djaugel = /<—Q(?;t< +7- (—ﬁx)> dtd®z (33)
= /x (gf +ﬁ-j> dtd*T . (34)

oll nous avons intégré par partie en supposant que les termes de bord s’annulent.
On voit donc que le lagrangien est invariant si et seulement si

24V.7=0. (35)

Il sera démontré dans le second devoir a la maison que cette équation de continuité
est une conséquence des équation de Maxwell.

42



8.2. Lagrangien d’une particule dans un champ électromagnétique
8.2. Lagrangien d'une particule dans un champ
électromagnétique
a) On calcule le moment conjugué

oL mu -

L L § (36)
ov /1_10,32

Les équations d’Euler-Lagrange donnent

dp 0L - =
L= =g (w V(7 A)) . (37)
On remarque . .
dA 0A - = o
— = -V)A.
i +(v-V) (38)
donc si on pose y =1/ 1—222 on a
i By S U
o (ym¥) = —¢q (qu + N + (V(v -A)— (v- V)A)) . (39)

Comme

—

TxB=0x(VxA)=V{@ A —(7-V)A, (40)
et puisque E= —ﬁ¢ — fo/ Ot on en déduit que

%(’ymﬁ):qﬁ—kqﬁxé. (41)

2

b) La relation de conservation de 1’énergie mc? = (£/c)? —p? avec j = ym implique

2 d& dp

— g _o9y. X 42
28w 7y (42)
2 _dE€ o,

= 2= 925 E. 43
2 o —2ap (43)

Donc £

= —gv-E. 44
o =4 (44)

On retrouve le résultat que seul la force électrique contribue au travail.

¢) On peut maintenant combiner les deux équations et en une seule sur le
quadri-vecteur impulsion P selon

de = E
P _di (g \_ 0 am % ) (45)
dr dr % q(E+Ux B)
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44

Corrigé PC 4 : Invariances et lois de conservation ; théorie lagrangienne relativiste

Comme le quadri-vecteur vitesse a pour composantes U = 7(c¢,¥) on en déduit
que

dP#
T :qFMVUy, M:0,1,2,3. (46)
T

Le premier temps de ’action décrit I’évolution de la particule le long de sa ligne

d’univers donc
to T2
— ’ITLCQ/ ydt = —ch/ dr, (47)
t el

1

ol nous avons utilisé la relation dr = dt/y = /1 —0%/c2dt entre le temps t

et le temps propre 7. En introduisant le quadri-vecteur A = (¢/c, A'), comme le
quadri-vecteur vitesse U = v (¢, ¥) alors U+ A =~ (¢ — ¥+ A), et le second terme
de l’action s’écrit

to . to dt To
—q/ q(¢ —7- A)dt = —q U~A:—q/ U-Adr. (48)
t1 t1 Y T

De cette formulation on déduit facile les équations du mouvement obtenues pré-
cédemment

Pour cela on remarque que U? = ¢? donc le lagrangien s’écrit

L=—(mU?+qU-A). (49)

13 2 _ : N __dx . .
En utilisant que U* = ufu,, varions par rapport a z,, et u, = —*. Les équations

d’Euler-Lagrange donnent

d oL dut dA*

awou, = "ar Yar (50)
oL
- 22— qU,rAY 1
o, qU,0 (51)
Ce qui implique que

dP* dAV
il LOrAY - T 9
dr a (U 0 dr ) (52)
= qU, (OFAY — 9V AH) . (53)

Comme FH = gAY — 0¥ A* on retrouve bien les équations du mouvement.



9. Corrigé PC5 : Mécanique relativiste

Relativité restreinte (PHY 431)
Pierre Vanhove
PC du 9 décembre 2014

9.1. Théoreme de la composante nulle

a)

On suppose que A = (O,A') dans tous les référentiels Lorentziens. Ecrivons la
transformation de Lorentz entre deux référentiels R et R'. La loi de transformation
est celle vue en PC 3 (et le rappel donné dans la feuille de PC)

0 = v(0-3-4) (1)
X - A+75<7§-/T). @)

Ou l'on a utilisé que les composantes temporelles sont nulles dans tous les réfé-
rentiels. En utilisant la premiére équation on en déduit que A=A qu1 dans la
premiére équation donne 6 A=0 pour tout 6 On déduit donc que A=0et que
A = 0. On le résultat aussi qu'un quadri-vecteur dont les composantes spatiales
sont nulles dans tous les référentiels. Alors le quadri-vecteur est nul.

Nous avons bien stir, un résultat équivalent pour un quadri-vecteur dont les com-

posantes spatiales sont nulles dans tous les référentiels.

Soit P = (Po,ﬁ) un quadri-vecteur de genre temps P - P > 0. On cherche un

référentiel ou P = 0. On considére une transformation de Lorentz telle qu’il existe
un référentiel ol ses composantes sont données par P = (PY,0)

P’ = 4P (3)

P = ~3P". (4)

Donc on voit si I'on choisit pour la vitesse relative réduite du référentiel R’

Dans le référentiel R’ le quadri-vecteur aura P’ = 0. On vérifie bien str que

0\2 52
o (= L (PP ) =P (o)
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Corrigé PC5 : Mécanique relativiste

Pour la quadri-vecteur P = P/ — P? a pour composantes P = (Sﬁnale —
ginitiale Bf _ 152) La conservation de l'énergie £finale  ginitiale — () ogt vérifice
dans tous les référentiels donc dans tous les référentiels la composante temporelle
de P est nulle. D’aprés la question a) on en déduit que sa composante spatiale
est nulle. C’est-a-dire que nous avons la conservation de 'impulsion dans tous les
référentiels.

9.2. Masse invariante et référentiel du centre de masse

a)

46

Considérons un systéme de particules libres de masses m;.
On calcule (P1 + P5)?

(P1+Py)? =P} + P} +2P; - P, (7)
Dans le référentiel ot la particule 1 est au repos Py = (P, 0) donc

(P1+Py)? =P7 +P3+2PP). (8)

Comme PZ-O > 1/P12 avec ¢ = 1,2 pour un particule de genre temps ou lumiére

(dans ce cas on a égalité). Donc

(P1+P2)? > (/P +/P3)? (9)

d’ott le résultat. Pour un systéme de plusieurs particules telles que P; = (mj;c)?,

on a donc que
VPL =D \/PE=D muc. (10)
i i

Si les particules sont au repos les unes par rapport aux autres alors P; = (&;/¢,0)

et P =37, P; = (3, &/c,0) = (32, mic, 0). Done s = (P*")? = (3, mic)*.

Par définition P = Py + P3. On a que s = (P; + P2)2. On suppose que les
deux particules forment un état li¢ de masse m; donc s = (myc)?. On développe
I’expression pour s

s = P{+P3+2P; Py (11)
= (mic)? + (mac)® + 2mycPy (12)

ot 'on a utilisé que la particule 1 est au repos donc P; = (my¢,0). L’énergie de
la particule 2 est By = Pdc

By MMM o (13)

2m1



9.3. Effet Compton

d) L’énergie totale du systéme initial est

2 2 2
mt+m1_m202

Eiot = mic? + By =
2m1

(14)

Dans le référentiel du centre de masse P! = (myc, 6)(}1\/[ et dans le référentiel du
laboratoire Pt = v“M(m,c, 5;). Donc YMmyc = Eyor/c d’ott

2mimy
Comme y“M > 1 il faut que
2 2,02
mi m221<:>mt2m1+m2. (16)
2mimy

La masse total est supérieure & la masse des constituants car entre en jeu I’énergie
de liaison. Dans la limite non relativiste on a fyCM ~ 1 donc m; >~ mq + mao.

e) Pour cela on applique la question b) de I’exercice précédant donc

- — 2
—CM CM Dtot DtotC
v = ﬁ C= —F/—C= . ].7
Pt(g)t <S’tot ( )

f) On calcule donc

R S (18)
P2, C2 Cy/ E2 /62 — ]52
1— % tot tot

tot

en utilisant que £2,/c% — 2, = P2, = (myc)? et 'expression déduite a la question
d) pour I'énergie totale donc

vt _ w4t~ o
2mymy '

9.3. Effet Compton

On consideére la diffusion de rayon X sur du graphite. On considére un électron
e~ au repos percuté par un photon «. Aprés le choc le photon et I’électron diffusent.
Nous avons la réaction suivante

Yyt+e —=v+e (20)
a) La relation de conservation de 'impulsion donne que

——— ;
P, +P._ =P/ +P/_. (21)
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Avec I'impulsion initiale et finale du photon

) £ Thw;

P = c

v ]31 = hkt
&f hw

pl = (=<

v o = hkt

L’électron initial est au repos donc

i meC
Pe= ()

et ’électron final a pour impulsion

&f
P/ = (ﬂ) .
e pf

La relation de conservation de la quadri-impulsion donne

hw; —wy) = &l —me?.

La conservation de 'impulsion
hki— k) =pl.
b) Avec les expression données précédemment on trouve que
(P, —P/)> = (P)* + (P))> — 2P} - P/

Pour le photon nous avons (P?)* = (Pé)2 =0 donc

i 2 _ 2 (WiWyp o
(PL—PI)> = —2n (7 -y -kf)
wWW
= —2h2CTf(1—COSG) s

ou Don a utilisé k- & = |k| [k7| cos @ et |ki| = wi/c et |kf| = wy/e.
c¢) On calcule

i fy\2 i \2 I 2 ] !
(Péf - Pe*) - (Ple*) + (Pe*) - 2P’<L27 ’ Pef

= 2me(mec® — 55,) ,
La conservation de I’énergie implique Eef, =h(w; —wys)+ mec?. Donc

P - Pg,)2 =2meh (W — w;).
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9.3. Effet Compton

d) On écrit maintenant que (P — Pf,)2 = (P?Y — P§)2. Donc

2meh (wp — w;) = —2h? wzcio;f (1 —cosb). (34)
donc )
1 1
1 - cos = < <—> (35)
wr o wj
Comme \ = 27wc/w d’ou
e 1 1
1—(:08(9:w()\f—/\i):mec2 (—) . (36)
Er &

En déduire la relation entre I’angle de diffusion et la différence des longueur d’ondes
des photons initial et final. On rappelle que £ = he/\.

On constate que pour une énergie initiale donnée &; I’énergie finale £ est minimale
(ou la longueur d’onde A est maximale) lorsque 1 — cos @ est maximal donc 6 = ,

1 1 2

?f:a+@ (37)

Pour une source de Césium 137 émettant des photons d’énergie 5;' = 662 KeV,

I’énergie des photons finaux est maximale, lorsque A/ est minimale. Ce qui est réalisé
pour 6 = 7. On trouve alors 5,{ = 184.35KeV.
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10. Corrigé PC 6 : Relativité et
électromagnétisme

Relativité restreinte (PHY 431)
Pierre Vanhove
PC du 16 décembre 2014

10.1. Loi de transformations

a) Les champs électrique et magnétique sont les composantes du tenseur électroma-
gnétique

0 —-FE%/¢c —EY/c —FE%/c
E'/c 0 B. -B, )
EY/c —B, 0 B, |
E*)c B, -B, 0

o=

La loi de transformation de ce tenseur est
W = AF LAY 5 FPP (2)

avec 'expression d’un transformation de Lorenz générale

Ay = v (3)

Aoi = _’7527 1= 17 27 3 (4)

ANog= = —p', i=1,23 (5)

AL = 8+ ——BB;. 6

j o= ) ()

En appliquant cette transformation et en utilisant les identifications F% = —E°

et B; = %eiij 7k on trouve la loi de transformation des champs.

Pour le cas d’une transformation de Lorentz selon l'axe (Oz) on a

vy =B 00
=B ~ 00

A=1 0 1 0} (7)
0 0 01

o1
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52

on vérifie que

_Elz/c _ F/Oac — AOMAIVF;W (8)
— (,YFOV o ,y/Bqu) Axy (9)
(v* =7?B%) (—E"/c) = —E"/c (10)
et
~E'Y/c = F'%=A,AY, FM (11)
= (yF¥ —yBF™)AY, (12)
= yF% —yBF™ (13)
= —EY/c—~BB:. (14)

On a vu en PC4 que I} = E?/c* — B? = —F"F,,/2 et dans le second devoir
a la maison que I, = E.B = —cetPOF, Foy /8 donc ces quantités sont bien
invariantes de Lorentz. Sinon on peut vérifier en utilisant les lois de transformations
précédentes que ces quantités sont invariantes.

S'il existe un référentiel R’ ot E' = 0, dans ce référentiel Iy = E' - B' = 0 et
I = —(E’ )2. Donc il faut que dans tous les référentiels R que le champ électrique
soit orthogonal au champ magnétique, et que E? < B2, En utilisant les trans-
formations de Lorentz entre le référentiel R’ et R on trouve que E = —05 x B.
On vérifie bien que I, = E - B =0 et que I; = —(B2/7% + (3 - B)?) < 0

Dans 'approximation Galiléenne au premier ordre en v/c on trouve que

. _ ., -, 7x E
B, =B; B, =B -—5~. (16)
C
donc
E' = E+©xB (17)
= . GxE
B = B- a2 (18)

On prend le champ selon 'axe (Oy) et on fait une transformation de Lorentz selon
I'axe (Oz) avec B = 0. Donc

E. =0 (19)
E, = ~E, (20)
B, = 0, (21)



10.2. Mouvement quand les champs sont paralléles

et
B, = g, (22)
B, = 0 (23
B, = 0, (24
comme E’ = v E on trouve donc que
F--Lag (25)
c

Dans la limite ultra-relativiste, on a une configuration avec cB=ixEeti=1.
Les champs sont orthogonaux et égaux en norme. Les champs sont orthogonaux a
la direction de propagation selon 'axe (Oz). On a donc la description d’une onde
électromagnétique.

10.2. Mouvement quand les champs sont paralléles

On se place dans la configuration telle que E = (0,0, FE) et B= (0,0, B).

a) On va en cours que I’équation d’une particule chargée soumise a un champs élec-

tromagnétique est
dpPH

— =qF"U, 2
dr o (26)
donc puisque P = mU on a
dU# q
— = =F"U,. 27
dr m (27)

b) Les équations du mouvement deviennent

‘ZUTO - %FOVUV_%ECU?’ (28)
dg; = %UQ (29)
dgj = —%Ul (30)
dde = %UO (31)
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On a donc le systéme d’équations du second ordre

d2U° aEN?
R <m> u (32)
d2U3 aBE\?
e = <m> vt (33)

dont la solution est donnée par

E E

U° = w3 cosh <q7> + ui sinh <q7_> (34)
me me
E E

U? = 3 cosh <q7> + u? sinh <q7> ; (35)
mc me

ot 'on a utilisé les équations (28)) et (31) pour relier les coefficients. Pour les autres
coordonnées nous avons

d2ut qB\?
i ‘(m> v (36)
d2U? qB\?
pr ‘(m> v*. (37)

dont la solution est donnée par

B E

Ul = ul cos <q7> + ul sin <q7_> (38)
m me
B B

U? = u'cos <q7_> + ul sin <q7_> . (39)
m m

ol 'on a utilisé les équations et pour relier les coefficients. Si on suppose
les conditions initiales U = (yv,0,0) pour 7 = 0 on trouve que

U = u? cosh (gnEcT> (40)
U' = ywcos <(]Tf7‘> (41)
U? = ~wsin <f7’) (42)
U3 = w3 sinh (gi7> : (43)
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10.2. Mouvement quand les champs sont paralléles
Maintenant on utilise que U? = ¢? pour trouver que ¢ = (u*)? — (yv)2. Donc

3 =cy/1 202 44
u- =c +767—07' (44)

ot I'on a utilisé que y~2 =1 — (v/c)%.

¢) Puisque dt/dr = U"/c =~ cosh(¢ET/(mc)) alors

) qF mc
t=~sinh|—7) — 45
. (m ) " (45)
qui permet d’exprimer 7 en fonction de t. Puisque dz/dr = U? =

¢y sinh(gET/(mc)) on trouve que

2 E
z=2zp+7y —TZZ, cosh (zw7'> (46)
Et pour les autres coordonnées avec u = y v
B
r = 2%+~ Z—ZL sin <qm7') (47)
B
y = y'—~ Z—Tg cos <C5n7'> . (48)

On trouve un mouvement hélicoidal.

d) Quand E = 0, alors t = v7 (qu’on peut déduire de I’équation (45)), donc on
trouve un mouvement circulaire avec un pulsation cyclotron
_ 98

w_fym' (49)

e) Pour B = 0 on a juste un mouvement selon z. Si on suppose qu'at =0ona z =0

2= % <cosh <7qfcf> - 1) . (50)

Puisque cosh(z)? — sinh(z)? = 1 alors

mc? qEt 2
=5 — 1 -1 . 51
=T qF + (fymc> (51)

alors

Dans la limite non relativiste ¢ > 1 et 7 ~ 1 donc

_mc 1 <th)2 1 qEf?

. - = 52
- qF 2 \ mc 2 m (52)
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11. Corrigé PC 7 : Mécanique
Hamiltonienne

Relativité restreinte (PHY 431)
Pierre Vanhove
PC du 6 janvier 2015

11.1. L’oscillateur harmonique

On considére un oscillateur harmonique & une dimension de potentiel

1
V(g) = 5 mw’q” (1)
a) La lagrangien est donné par
L o 1 5,
=— - = 2
L=gmg" —gmwq (2)

Les équations d’Euler-Lagrange

d oL 0L
= )
dt 0q dq
donnent
mij = —mw’q (4)
b) L’Hamiltonien est donné par
L 5 1 9,4
= — - 5
H o + 5w (5)
Les équations d’Hamilton
. _ I _p
¢ = dp m
OH
p = _87q = —mWQQ (6)
impliquent
j=—w’q (7)

o7



11. Corrigé PC 7 : Mécanique Hamiltonienne

¢) Le moment conjugué p s’écrit
oL .
TR ®
donc I’Hamiltonien s’écrit
1 2 —at 1 2 2 at
H=—-pe ¥+ -w g’ (9)
2 2
Les équations d’Hamilton donnent
g = pe ™
p = —w?qge™ (10)
ce qui implique
i+aj+wiqg=0 (11)
11.2. Mouvement dans un repére tournant
On part de la définition du moment conjugé
oL .
ﬁ::?:m{)’—{—mQxU (12)
U

donc v = % — () x 7 et le Lagrangien se réécrit £ = 2 /(2m). Ainsi 'hamiltonien est
donné par

H = p-v—L (13)

= ﬁ-(p—ﬁxf>—£ (14)
m
(15)

En utilisant la propriété du produit vectoriel @- (b x &) = b- (¢x @) que 'on démontre
(16)

aisément en exprimant cette quantité
a-(bxé) =eypatick

en utilisant le pseudo-tenseur totalement antisymmetrique e;j;, introduit en PC5.
Ainsi ’hamiltonien du systéme est donné par

-9
=2 _G.rxp. (17)

H =
——

U

[\

m
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11.3. Le cerceau a vitesse angulaire constante

11.3. Le cerceau a vitesse angulaire constante

i
N

FIGURE 1. — Perle sur le cerceau en rotation

a) La perle sur le cerceau a pour coordonnées

x = Rcos¢sind (18)
= Rsin¢sinf (19)
z = Rcosé. (20)

Si on désigne la vitesse de la perle par ¥/ alors
72 = R* (6 + w?sin?0) (21)

oul 'on a utilisé que gZ) = w est la vitesse de rotation du cerceau. La perle est
soumise au potentiel gravitationnel donc

V =mgcos?, (22)
et le lagrangien est donné par
R? .
L= m2 (0> + w?sin? @) — mgR cos .. (23)

L’équation d’Euler-Lagrange pour la variable 8 donne

d oL oL

4oL _ ok 24

dt 96 06 (24)
. 2

% (mR*9) = @uﬂ sin(26) + mgR sin 6 (25)
donc )

. _ wf . 2 .
0 = 5 sin(26) + 7 sinf. (26)
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b) Puisque
oL 24
P=s (27)
L’hamiltonien est donnée par
2 2,2
: Dy mR‘w* . ,
H=1pgb — L 5 2 5 sin 6 + mgR cos 6 (28)
Les équations d’Hamilton-Jacobi donnent que
; OH Do
o — 9t _ 29
3]),9 mR2 ( )
2
Dy = _(983;( _mitw sin(260) + mgRsin 6 . (30)

en combinant ces deux équations on retrouve I’équation du mouvement donnée

dans .

c¢) La perle est soumise au potentiel effectif résultant de la force centrifuge et de la
force de réaction du cerceau sur la perle

2,2
Verp(0) = _mR2w sin? 0 4+ mgR cos 0 (31)
w2
= —mR? (2 sin? 6 — w? cos 9> : (32)

On constate que Vegp(m —0) = Veps(m+6) qui implique une symétrie par rapport
0 = m. On calcule la dérivée du potentiel
dVere(0
e:;g() = —mR?sin 0(w? cos § + w?) (33)

On constate que cette dérivée s’annule pour = 0 et § = 7 pour toutes les valeurs
de la vitesse de rotation w.

Autour de 8 = 0 le potentiel prends la forme

2

mR
Vs (0) = mR%wy — (W? +wd) 6% + 0(63). (34)
Le signe moins indique que la position d’équilibre 8 = 0 est toujours instable
quelque soit la vitesse de rotation du cerceau.

Autour de § = 7 on trouve

mR? 9 9

Vers(0) = mR*wy — (w® = wp) (0 = m)* + O((0 — m)°). (35)

Ainsi la position § = 7 est stable pour les rotations lentes |w| < |wp| et instable
pour les rotations rapides |w| > |wpl-
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Si la vitesse de rotation |w| > |wp| on trouve un autre point d’équilibre

2
w,
cos B, = ——g, pour w > wy . (36)
w

On en déduit que pour les rotations lentes |w| < |wp| la perle oscillera autour de
la position d’équilibre 8 = 7 avec une pulsation R \/wg — w2,

Pour les rotations rapides |w| > |wp| la position 6 = 7 devient instable et la perle
s’écarte de cette position. La solution 8, devient une nouvelle position d’équilibre
stable puisque

d?v (0
Ve tm=vie)+ TP o) (37)
ol nous avons utilisé que %30) = 0. La dérivée seconde est donnée par
0=0.
d*V (0
d@g) = —mR? (w% cos 0 + w? cos(26)) (38)
= —mR? (w% cosf + w2(2 cos? ) — 1)), (39)

ott 'on a utilisé que cos(20) = 2 cos? § — 1. Ainsi pour la position d’équilibre 6, on

a que
d?V ()
do?

4
= mR%w? (1 — wi) . (40)

w

0=0.

est positive ce qui correspond & la nouvelle position d’équilibre stable.
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12. Corrigé PC8 : Relativité et
gravitation

Relativité restreinte (PHY 431)
Pierre Vanhove
PC du 13 janvier 2015

12.1. Géodésiques en relativité générale

sp
S —/ G (27)2H " ds, (1)
sa

o ## est par définition dz* /ds et ou s est un paramétre le long de la courbe joignant

Aa B.

a) Les équation d’Euler-Lagrange pour la densité de lagrangien £ = g, (27)&#z”
pour les cordonnées x* s’écrivent

d oL oL
ds dir  dar @)
soit p
= 0u") = Do (1) (3)
Ces équations peuvent se réécrire
iH 4 gM <8pggy(x) — ;8,,gpg(x)) PP = 0. (4)

b) En utilisant la définition du symbole de Christoffel

1
T4, = 59" (0xgop + Dpgor — Dsrn) (5)

et la symétrie du tenseur métrique g, () = gyu(x) on trouve que I'équation du
mouvement d’une particule libre dans un espace courbe est donnée par

BTN i = 0. (6)
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¢) En détaillant les composantes I’équation du mouvement s’écrit

d2zH dz0\ 2 dzO\ dzt dxt da?
| A | I et ——=0. 7
d72+00<d7>+02<d7> d7'+”d7'd7' 0 (7)

Pour un mouvement lent (non relativiste) de la particule les termes en vitesse
dz'/dr sont négligeables devant les dérivées dt/dr et I'équation s’approxime en

AP dax? 2
T# — ] ~0.
dr? + 300 < dr > 0 (8)

Pour un champs stationnaire alors dyg,, () = 0 donc I'); = 0

_1 w 8900

b~ . 9
00 29 Oz’ 9)

Dans la limite des champs faibles g, ~ 1, + hu, cette équation s’approxime en

i ~
00 — 277 Oz’

1 .
- 5 vlh()() . (10)

Les équations du mouvement donnent dans ces approximations

d?z0
A2zt 1 /dz0\? i
rE <d¢> Vihoo (12)

De la premiére équation on déduit que z° = ¢t = a7 + B donc I’équation du
mouvement pour les coordonnées spatiales x* avec ¢ = 1,2, 3 s’écrit

d*z - [ c?
— =—-V|=h . 13
dt2 ( 2 00> ( )
On reconnait I’expression du mouvement d’une particule soumise 4 la force gravi-
tationelle F' = —VU dérivant du potentiel

C2

U(f) = ? hoo(f) + Cste. (14)

On rappelle que pour une particule de mass m soumise au un potentiel gravita-
tionnel, I’équation du mouvement est m# = —mVU (Z).

d) On considére la métrique de Schwarzschild donnée par

rc2 rc2

2GNM 20G M\ !
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ol Gy est la constant de Newton.

e) L’approximation & grandes distances de cette métrique donne

2GNM
hopg = ————— . 16
=20 (16)
donc le potentiel gravitationnel est
GNM
U@) = ——~ (17)
T

ol l'on a fixé la contante d’intégration comme nulle. Pour un corps sphérique de
masse totale M le potentiel Newtonien & la distance r de son centre est bien donné
par ’expression trouvée ci-dessus.

12.2. Déviation des rayons lumineux

\Y
D e e L
b P
~ VB2 F 022
Y .
0 T

FIGURE 1. — Déviation de la lumiére au voisinage du soleil

On considére une petite masse m # 0 arrivant de I'infini et rasant le soleil de masse
M. La trajectoire de la particule s’incurve d’un angle A faible (voir la figure). On
supposera que y ~ b est constant.

a) Par définition

50 — 67y _ Uy(l"i‘ﬁ,y) —Uy(l'ay) 5tzamvy5t, (18)
ox €
donc S
Af = / Dy dt . (19)

b) Pour une particule de masse m soumise au champs de gravitation donc

dpy __GnMm

i 3 oSy, (20)
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avec cos ¢ = b/r donc

dv GNMb
i 21)
Comme 72 = b2 + (vt)? on en déduit que
%_dvyiN_GNMb (22)

dr ~ dt v, ord

ou 'on a utilisé 'approximation v ~ v, car la déviation selon (Qy) est faible. Donc

+o0 M M +oo
ao [ gy G Ty
v(b2 + (vt)?)2 b* Jooo (14 a2)2

—0o0

en utilisant que fjoooo 7( di)?, = 2 on trouve dans le cadre de la mécanique New-
1+z4)2
tonienne une déviation de
2GNM
Newton __ N
Ab = - (24)

¢) Comme cette formula ne dépend pas de la masse on peut I'appliquer aux rayons
lumineux de vitesse v = ¢ rasant le soleil b = R. On trouve alors

AGNevton — _4 95107 radian = .875 secondes . (25)

On rappelle qu'un degré a pour valeur numeérique 7/180 radians.

d) L’équation du mouvement déduite dans l’exercice précédant donne

du¥
-+ Ty (u®)® + T, (u*)? + 20 u’u” + T¥, (u?)* = 0. (26)

Ou les composantes du quadrivecteur vitesse sont dénotées U = (u#). Comme la

vitesse selon y est faible u¥ est négligeable donc

L =Ty (%) — T4, (u?)? — 2TYgulu (27)
:

Comme u¥ = vy 0¥ avec v approximativement constant on en déduit que

du? dv¥Y 5 dvY
b A — 28
ar  ar " dw (28)
ce qui dans I’équation du mouvement donne
1 dv¥ (u®)? u” u®
car = oo w2 (29)
Yu cy cy
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Puisque u’ = vyc et u® =yv on a

Loy
c dx

C v
~ Ty (S + ) 21l (30)

Maintenant on utilise que la métrique de Schwarschild 'y, ~ '}, pour trouver que

C v

1 dv¥
— =Tl (o +2) -2k, (31)

c dx

Pour la métrique de Schwarschild de I'exercice précédant on a T, ~ Gy Mb/(r3c?)

et TY) ~ 0 ce qui donne que pour la variation de la vitesse

1 @ N_GNMb (c v) ' (32)

c dr r3c2 v

En appliquant cette équation au cas de la lumiére avec v = c et avec r? = b?+(ct)?

on en déduit que

dv!  2GNMb (33)
dz (24 (ct)?)2c

ce qui donne comme angle de déviation pour la lumiére

. . +Oo
Aerelatlwt — / _Lj\ﬂ)é dt = _ZIGLQM (34)
(02 + (ct)2)3e be

—00
Soit pour la déviation des rayons lumineux par le Soleil

Agrelatvit — 8 51076 radians = 1.75 secondes . (35)

On constate que la différence entre le résultat calculé en physique Newtonienne
et en relativité est un facteur. Ce facteur deux vient de l'effet de courbure de
I'espace-temps qui introduit un terme supplémentaire en I'4,v/c dans 1’équation
du mouvement. Le calcul Newtonien revient a ne considérer que l'effet du potentiel
gravitationnel sur le temps et travailler avec la métrique

2G N M
ds® = (1 - GN2 ) Adt? — di? (36)

rc

alors que le calcul correct en relativité général tient compte aussi de la courbure
de la partie spatiale comme donné par la métrique de Schwarzschild .
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Corrigés des devoirs a la maison
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13. Correction du premier devoir a la
maison

Relativité restreinte (PHY 431)
Pierre Vanhove
Devoir a la maison
Avis au lecteur :
Dans ce texte les questions sont italiques, les solutions sont en caractéres droits.

13.1. Equation d’onde

On consideére ['espace & quatre dimensions de coordonnées (ct,x,y,z). Soit
(ct', 2’ ', 2") un autre systeme de coordonnées reliée au premier systéme par la trans-
formation suivante

ct a b 00 ct'
x b a 0 0 z
y|l |0 0 1 0 y | (1)
z 0 0 01 2

On consideére Dopérateur d’Alembertien définit par

s e — s — s (2)

a) Déterminer la loi de transformation du d’Alembertien sous la transformation ([1f).

La d’Alembertien est donnée par

0 =1"9,0, (3)

si on dénote par A la matrice dans la transformation (1) on obtient
D/ — A/M“AV/V nuu aulay/ . (4)

On vérifie que pour des valeurs générales de a et b la transformation (1) ne préserve
pas la métrique de Lorentz

AP LA (5)
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13. Correction du premier devoir & la maison

ce qui est visible en calculant le déterminant det A = a? — b? alors que pour une
transformation de Lorentz le déterminant vaut un.

Par un calcul direct en coordonnées la transformation (1) implique

s = e o (6)
R R (7)
donc

a((Z:')Z’ _ a28(8;)2+b2§;+2aba<§1%, (10)
3o = Ve g s "
8?;2 - aa;z’ ()
882 -z (13)

on trouve donc
G (B BBy

b) Considérer le cas de deux observateurs avec une vitesse relative v selon l'axe Ox
faible devant la vitesse de la lumiére. Montrer qu’au premier ordre en v/c la trans-
formation de référentielle entre les observateurs correspond a (a,b) = (1,v/c). Cal-
culer la transformation du d’Alembertien sous cette transformation. Que concluez-
vous ¢

La limite non relativiste des transformations de Lorentz & l'ordre quadratique en
la vitesse v/c

ct = ct’+%x+o(v/c)2 (15)

x = $/+Ect+0(v/0)2 (16)
c
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correspond & a = 1 et b = v/c. Dans I’équation on trouve

2 2 2 2 2
i (v (0 9N _ 9 9 >
0= (1 02> <8(ct)2 8362) oy 022 +0(v/c) (17)

indiquant que 'opérateur d’Alembertien n’est pas invariant sous les transforma-
tions Galiléennes.

Si on conserve v < ¢ mais non nulle, le d’Alembertien n’est invariant qu’au premier
ordre en v/c : O’ ~ 0O+ O(v?/c?).

Si on prend la limite ¢ — oo et que 'on suppose que les variations temporelle
et spatiales sont faibles alors O ~ —A + O(1/c?) et on retrouve bien str que le
Laplacien est invariant.

On considére maintenant que nos deuz observateurs sont relativistes, toujours en
mouvement relatif & vitesse v le long de l’axe Ox. Donner la loi de transformation
du d’Alembertien. Que concluez-vous ¢

Pour les transformations relativistes on a a =y et b = 3 avec v = (1 — ﬁz)_% et
B=v/c,donca?—b?=1etO=0"

Le d’Alembertien est donc invariant sous les transformations de Lorentz.

On consideére I’équation de Schrodinger

h? oV (t,x,y, z)
_7A\1Itaa7 Ulz,y,2)V(t, z,y, = ih——"
I A(twy. )+ Ulr.2) Uty ) = ih O
avec la laplacien A = (9/0x)>4(0/0y)%+(9/0z)?. Etudier invariance cette équa-
tion sous une transformation galiléenne. Montrer qu’il existe une fonction f, 2
telle que U(t,x) = f(t',2")U(t',2") avec U (', z") une fonction d’onde satisfaisant
I’équation de Schrodinger en les variables (t',2).

(18)

Sous une transformation galiléenne

t =t (19)
¥ = z+out (20)

I’équation de Schrédinger se transforme

OV (z,t) a(f(t, 2"\ b(t,2'))  A(f(t,a")b(t, "))

o o r oo’ 21)
OW(z,t) _ O, z)V (' a))
Ox B ox! (22)
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13. Correction du premier devoir & la maison

On en déduit que

2 5 5 \Tj VA
f(t,2) <—2hmA’\Il(t’,m’) TUW,2)E(H, 2 —ma(t’x)> =

ot
- R 0% f(t', x") af (', x")
_ \Il / / _ ) _ Y
(', x") ( o 00 ih 57 )
RZOf(t,x") ;A\ 0U(t, )
Si on veut que U satisfasse 'équation de Schrédinger il faut que
- R 0% f(t', x") af (', ")
NI AN A AU S S AR L)
(t',x") < o o0 ih 57 >
R2Of(t,x") ;A\ 09t )
Puisque ¥ et 9, ¥ sont arbitraire ceci implique
() . Of(ta!)
- —q = 2
o 007 ih 5 0 (25)
h? 8f(t/7 :C/) . roo
= VA = . 2
P ihof(t', 2) 0 (26)
Ces équations impliques
;muvT -mv2
flt,z)=foen ~ort (27)

oil fo est une phase constant d’intégration. Afin que |¥(t,z)|? = [U(¢,2')|? cette
constante doit étre une phase.

On reconnait dans la phase le produit de la quantité de mouvement et de la
position p- z/h. Le second terme de la phase est 1’énergie cinétique non-relativiste
T= %va fois le temps t.

e) Que ce passe-t-il pour l’équation d’onde Op(t, x,y, z) = 0 dans le cas galiléen et re-
lativiste. Peut-on trouver une fonction f(t',x') telle que ¢(t,x) = f(t',2") ¢' (¥, 2")
et que l’équation d’onde soit invariante sous les transformations galiléennes. Qu’en
déduire sur la nature de ’équation d’onde ?

Dans la cas Galiléen on a avec la transformation

¢(t/7 m’? y” Z/) = ¢(t’ T — Ut? y7 2) = ¢(t7 ':U7 y’ Z) (28)
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13.1. Equation d’onde

donc
06 _ 06 000
dct  Oct! ¢ O (29)
0 0¢

donc sous une transformation Galiléene I’équation devient

. 0? 0?2 H? ? ?
Do(t %) = (act’2 B 2v8ct’ax’ + (CQ B vQ)@m/2 a oy'? - 6z’2> o

t, @)  (31)

Dans la cas relativiste

9¢(t, T) Oo(t', ) 9¢(t', ')

= — 32
Jct T et b ox! (32)
09(t, T) oo(t', ) do(t', ')
= ARt 33
oz L e T (33)
donc
Oo(t, Z) = (v* = ?BH0'o(t, &) = O'o(t', &) (34)
Une solution de cette équation est l’onde plane
o(t, T) = ik-Z—wt) (35)
avec la condition, conséquence de 'équation O¢(t,Z) =0
2
w —
o (k)2=0 (36)
qui est la relation de dispersion pour une onde électromagnétique relié sa fréquence
& = hw = hv a sa longueur d’onde ||k|| = 2F. On retrouve la relation de dispersion

VA =c.

On peut écrire la solution avec les quadri-vecteur énergie-impulsion P = AK =
(w/c, k) et position X = (2 = ct, Z) comme

o(t, %) = o kX (37)

et la relation de dispersion est la condition de masse nulle pour le quadri-vecteur
K

K- K=0. (38)

Si on compare avec la fonction f(¢,Z) trouvé dans on constate que celle-ci
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13. Correction du premier devoir & la maison

prend la forme f(t,Z) = fo !X ou cette fois

m(7)?
Q- ( 2] ) (39)

h

7\ 2
qui fait intervenir énergie cinétique non-relativiste m; ) et la quantique de mouve-
ment non-relativite m¢. On peut voir cette fonction comme celle d’'une onde plane

non-relativiste, qui n’est bien sur pas invariante sous les transformations de Lorentz.

13.2. Paradoxe d’Ehrenfest

En 1909 Paul Ehrenfest a énoncé un paradoze semblant montrer un incohérence
logique a la relativité restreinte.ﬂ

On considére un disque de rayon p en rotation avec une vitesse angulaire constante
w. On dénote par R le repere inertiel du laboratoire et R’ le repére en rotation attaché
au disque.

a) Quelle est la valeur du rayon du disque dans les reperes R et R’ ¢

Le mouvement du repére R’ est perpendiculaire au rayon, donc il n'y a pas de
contraction de Lorentz pour la rayon pour les deux observateur la rayon du disque
est le méme pr = prr = p.

b) Quelle est la circonférence L dans le repére du laboratoire R et L' dans le repére
du disque en rotation ?

Dans le repére attaché au disque en rotation L/ = 2wprs = 27wp, pour un obser-
vateur dans le référentiel fixe du laboratoire le périmétre est

Lr = / dlr (40)
bord
I’élément de longueur infinitésimal contracté selon la direction du mouvement ins-
tantanée il
/
dig = =% (41)
avec 1
wp
= = 42
car la vitesse d’un point sur la bord est v = wp. On trouve donc
Ly
Lr = -X%. (43)
Y
1. P.  Ehrenfest, (1909). Gleichférmige Rotation starrer Korper und  Relati-
vitdtstheorie. ~Physikalische Zeitschrift 10 : 918. Pour une traduction en anglais

http://en.wikisource.org/wiki/Uniform_Rotation_of_Rigid_Bodies_and_the_Theory_of_Relativity
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Puisque Li/ = 27p on trouve que

Lp=2r 2. (44)
v

¢) Comparer les rapports L/p et L'/p' 2 Qu’en concluez-vous ?

On a
L 2,2 Ly
"R o xyf1- L con = 2R (45)
PR ¢ PR’

La résolution du paradoxe est que ’observateur sur le bord du disque n’est pas un
observateur inertiel car il est soumis & la force centrifuge. Les sections de simultanéité
t =constante ne sont pas de géométrie euclidienne de métrique ds? = —daz? — dy? —
dz? = —(dr® + r?d#?) — dy® — dz? mais des courbes de métrique (voir L. Landau et
E. Lifischtz, Théorie des champs, Tome 2, §89 (MIR))

2
d5%)o—cste = —(dr? + — 5 db?) — dz2. (46)
-3
Pour ceux que ce paradoxe intéresse voici un article récent ot une résolution phy-
sique est discutée
R. Alexander “Ehrenfest’s paradox for tokamak plasma”, Journal of Modern Physics,

Vol.3 No.10, 2012, PP.1639-1646 http://arxiv.org/abs/1202.2953.

13.3. Effet Sagnac

Faolariseur

.

= Fibre ootique
L1 = YL monomode

| Déteciaur

L’effet Sagnac est un autre effet paradozal de la relativité restreinte découvert par
Georges Sagnac en 1913. Cet effet permet de détecter en optique un mouvement de
rotation par rapport a l’espace inertiel.

On considére a nouveau un disque de rayon p en rotation avec une vitesse angulaire
constante w. On dénote par R le repére inertiel du laboratoire et R’ le repére en

Source
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13. Correction du premier devoir & la maison

rotation attaché au disque.

Sur le bord du disque est placé un émetteur/récepteur E. Ce dispositif émet un
signal S1 qui se propage avec une vitesse wy dans le sens de rotation du disque, et
un stgnal So qui se propage avec une vitesse wy dans le sens opposé a la rotation du
disque. Les deuz signauz évoluent le long du bord extérieur du disque.

a) Déterminez les positions angulaires 01 et 02 de réception des signauxr Sy et Sy par
le détecteur.

On utilise le systéme de coordonnées x* = (ct,r,0,z). L'invariant relativiste
(cdr)? = (cdt)? —da? — dy?® — dz? = (cdt)? — dr? —r2df? — d2z?. Comme le probléme
est dans le plan z = cste cette coordonnée n’est plus écrite dans la suite.

La ligne d’univers du détecteur est

B = (ct, R,wt) = (69 R, e) (47)

)
w

Les signaux ont comme lignes d’univers

s = (2ro) (18)

w1
0
Sy = <c, R, 0) (49)
w2
Le signal S est détecté par E lorsque
0 2
o +2m) = = (50)
w w1 W] —w
Le signal Ss est détecté par E lorsque
0 2
D2 C gy —2m) ey = - (51)
w w1 wyg — W

Le signe — est d au fait que le signal S5 tourne dans ’autre sens.

Les vitesses angulaires du détecteur, du signal S7 et du signal Sy sont dénotés B,
B et Bs, telles que

B - “f (52)
C
R

B = == (53)

B, = “ft (54)
C

78



b)

13.3. Effet Sagnac

donc les angles dans sont donnés par

0. — 2B _ 2mw
L= Bi—B w—w
2nB 2mw
02 = = —

" By— B Wy —w

(55)

(56)

Calculer les temps propre 1 et 1o de propagation de chacun des signaux entre

I’émission et la réception. Calculer la différence des 6T = 11 — To.

Le temps propre de E dans le repére en rotation avec le disque

1 /? 10 V1i—-B2 [? V1 - B2
T= / cdr = / vV 2dt? — R2d9? = / dy=—80 (57)
CcJo cJo w 0 w
Posons 1 1
= = 58
0 \/1 — B2 \/1 B (wR)2 ( )
62
le facteur relativiste du référentiel en rotation. Pour le signal Sy
2 B 2
=" =Y (59)
v B —B v owp —w
pour le signal S5
2 B 2
= =T (60)
v B, — B Y W —w
donc
27 B —wo — 2
ATi=71 — Ty = e e (61)
wy (W) —w)(wa —w)
Si Uémetteur/récepteur émet de la lumiére de maniére isotrope w' = w1 = —wy,

donner ’expression de différence de temps 6.

Si E émet un signal isotrope avec une vitesse B’ (dans le repére inertiel local a

E), la loi de composition des vitesses donne

B, +B

B —1 v
! 1+ BB
B,+ B

B, —= —2'=
2 1+ BYB

donc
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AnrB%*y  2rBy [ 1 1
AT = w + w ? E (64)
1 2
avec B} + B) = 0 on trouve l'effet Sagnac relativiste
1
4rR*w wrR*\ 2
AT = 2 <1 -2 > (65)

d) Considérer la limite non relativiste. Qu’en concluez vous ?

1
2p2\ " 2 . L,
wcf ) ~ 1 et I'expression précé-

Si Rw < c alors le facteur relativiste v = (1 —
dente devient

AT ~ A’ R?w = 4Airew (66)

I’effet est proportionnel & I'aire du disque. Expérimentalement on constate cette dé-
pendance quelque soit la forme du bord entourant la surface. On peut donc ainsi
mesurer facilement la vitesse de rotation w.
Des gyroscopes a laser exploitant l’effet Sagnac sont couramment utilisés pour me-
surer avec précision la rotation d’un dispositif relativement a un repére inertiel.
Pour une discussion de la physique de I'effet Sagnac vous pouvez consulter

e J. Anandan, “The Sagnac Effect In Relativistic And Nonrelativistic Physics,”
Phys. Rev. D 24 (1981) 338.

e G. Rizzi and M. L. Ruggiero, “The Relativistic Sagnac effect : Two derivations,”
http://arxiv.org/abs/gr-qc/0305084.
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14. Corrigé du second devoir a la
maison

Relativité restreinte (PHY 431)
Pierre Vanhove
Avis au lecteur :
Dans ce texte les questions sont italiques, les solutions sont en caractéres droits.

14.1. Equation de Maxwell et sources

Le rang de covariance d’un tenseur est augmenté d’une unité par ’action de [’opé-
rateur O de « composantes » {0y, = 0,1,2,3} = (%,6) Le tenseur métrique (1,
ou son inverse n*" ) et le tenseur antisymétrique de Levi-Civita (€u,pe ou e"P7 avec
V23 = 1 = —gq193) peuvent aussi étre utilisés pour engendrer de nouveaux tenseurs
ou scalaires (invariants) a partir de tenseurs préalablement définis.

St l'on considére le tenseur de Faraday F décrit le champ électromagnétique. Ses
composantes F,, forment la matrice suivante :

0 E*/c EY/c E?/c

| —E¥/c 0 B. —By
F = —EY/c —B, 0 B, |’ (1)

~E*fc B, -Bp 0

alors

Pt =P Q,F,,. (2)

a) Montrer I’équivalence
Fl=0<+= 0,F,, +0,Fp, +0,F, =0 (3)

1

Ft =etP79,F,, = ga“”p" (OuFyp + OvFpy + 0,F ) (4)

Comme .
G e N = 0,Fyp + 0y Fppy + 0, F (5)

on en déduit .

Remarque nous aurions pu travailler sans expliciter les coordonnées en posant
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F, = Fte, (6)
dF = (9uFyp+ 0y Fpu + 0pF ) e Ne” Nef (7)

il faut alors montrer que Fy = dF. Nous avons
1
F = 3 (OuFyp + OvFpy + 0,F,,) €7 e, (8)

il suffit de réaliser que
"7 e, =3e" Ne" Nel. 9)

On a vu en PCY que cette équation implique les équations de Mazwell suivantes

V-B = 0 absence de monopoles magnétiques (10)
-~ OB
VxE+ il 0 loi de Faraday (11)

b) Veérifiez les expressions des invariants relativistes du champs électromagnétique

E?2
W Rl = —2( - B (12)
L po 8= =
€ Fo,F,, = _EE -B (13)
Sous une transformation de Lorentz A

F;,w =Fye NS A (14)

donc
L = """ AAP AN FopFls (15)
Iy = ™ ACNPATNS FupgFls (16)

Mais
" AN, =0T (17)

car la transformation de Lorentz préserve la métrique (ou de maniére équivalente
le produit scalaire entre deux quadri-vecteurs) comme nous l’avons vu en PC3.
Donc

L ="  FpF.s. (18)

Maintenant remarquons que

M7 AN PALTALD = (det A) 2P0 (19)
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Pour prouver cette identité, choisissez des valeurs de «, 5,7, d et utiliser la défini-
tion du déterminant d’une matrice comme une somme alternée sur les permutations
Sy de (1234)
det A =) [0] Ayg(1)Aas(2) Aso(3) Mo (20)
o Gy

les valeurs de £*¥P? correspondent a la signature de la permutation (1234) —
(uvpo). Comme les transformations de Lorentz ont det A = 1 puisque nous sommes
dans la composantes SOTT(1,3) du groupe des transformations (cf. PC3), et I
est bien un invariant relativiste.

Montrons maintenant ’équation ({16]).

I, = 8 (80123F01F23 + 60213F02F13 + 50321F03F21) (21)
E* EY FE*
= s (T - Tem) - Sen) (22)
_ _8Eg:Ba: + EyBy + Esz _ —8E B (23)
C C

c) Montrez que l’équation

O F" = po 3", (24)

implique les équations de Mazxwell avec sources

V-E = 2 loi de Gauss (25)
€0
_ = 10E e
VxB-— a2g = Mol loi d’Ampeére (26)

ot o et 7 sont les densités de charge et de courant (rappel : pgeoc® = 1).

Tout d’abord spécifions v = 0. Nous avons la suite d’équivalences suivante

o M= g’ (27)
= OF" = pco (28)
Ei
= &'? = poco (29)
— V.E = Eg. (30)
0
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pour v =i avec ¢ = 1,2, 3 on a la suite d’équivalence suivante

OuF" = st (31)

<~ 80F0i+8iji = ,u,oji (32)
o B

_a(ct)?ﬂ]kajBk = HoJ (33)
1 OF" ER— p

_Cﬁﬁ‘{'(vXB) = HoJ (34)

Montrer que J = {j¥,v = 0,1,2,3} := (co,J= 07 ) sont les composantes d’un
quadrivecteur J, dit de densité de courant, si la charge électrique est invariante
sous les transformation de Lorentz.

Comme J = £(¢,0) = %U puisque U est invariant de Lorentz il faut montrer
que o/ est invariant de Lorentz. On dit que la charge @ est invariante donc la
densité de charge o = dQ/dV est sensible a la contraction des longueurs. Sous une
transformation de Lorentz dV' — dV/~, et le facteur  est justement présent pour
compenser cet effet sur la densité de charge.

Alternativement, comme nous savons que j* = pg Lo, M est comme la dérivée
d’un quadri-tenseur est un quadri-tenseur, alors j* sont les composantes d’un
quadri-vecteur.

On peut aussi écrire ces équations sans expliciter les indices en introduisant
d+«F:=0,F"e, (35)
Alors I'équation de Maxwell avec source s’écrit
d*F = po*J. (36)

En utilisant le tenseur € on montre que

6 € eorpoOp FP7 = 0, FH . (37)
Sinon pose
*F = P F e’ ®e’ (38)
1
*J = 1 P’ Jyef @ e’ ® e’ (39)

Les équations de Maxwell sans sources et avec sources s’écrivent alors

dFF = 0 (40)
d+xF = poxJ. (41)



14.1. Equation de Maxwell et sources

e) Montrer que les équations inhomogénes de Mazwell imposent l’équation de conti-

nuité 9
0 & -
—+V.7y=0 42
5 TV (42)
La divergence de donne
le o2 =
—gv-atE:uov-j (43)

la dérivée temporelle de donne
|
6tV B = : &gg (44)
0

en combinant ces deux équations on obtient la relation de continuité demandée.

f) Ecrire cette équation en utilisant le quadri-vecteur J. Obtenir cette équation direc-
tement a partir de (24)).

Cette équation s’écrit simplement
Oet(cp) + 0ij" = 0" =0 (45)
En dérivant on obtient
0,0, FM = 190, J" (46)

mais comme F* est antisymétrique le membre de gauche est nul.

En utilisant les notations introduites dans cette équation s’écrit simplement
comme

(dxJ)=0. (47)

Nous avons vu en PCSH que les équations homogénes de Mazwell dans (3|), ou de
maniére équivalente — sont satisfaites si F,, résulte d’une forme de potentiel
A = (AY/¢, A) selon

Fu =0,A, —0,A,. (48)

Nous avons vu que A est défini a la dérivée d’une fonction arbitraire prés
A= A+ Vy (49)

Nous avons vu aussi que pour fixer cette liberté de jauge, on impose une contrainte.
Un contrainte invariante de Lorentz est la jauge de Lorenz

0, A" = 0. (50)
g) Montrer que dans cette jauge les équations de Mazwell inhomogénes deviennent

OA = pod, (51)
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ou O := 0,0" = c%g—; — A est Uopérateur d’Alembertien.
On applique
O F* =0, (0MA” — 9V AF) = 0,0" A = A" (52)

14.2. Le pendule double

On veut analyser la dynamique d’un pendule double placé dans le champ de gravi-
tation terrestre. Ce pendule est constitué de deux masses reliées par des cables rigides

de masses négligeables (voir fig .

a) Ecrire le lagrangian du systéme. En déduire les équation d’Euler-Lagrange.

Le lagrangien est donné par la somme des lagrangians des masses mp et mo, c’est-
a~dire £ = L1 + L9 avec

mi o

Ly = 7”1—(m19y1) (53)
L2 o= 05— (magye). (54)

(L’axe verticale est orienté vers le haut, d’oi le signe dans le potentiel gravita-
tionnel). Comme le mouvement est dans le plan (zQy) et la rigidité des cables se
traduit part les relations (z1 — 2)? + (y1 — y2)? = 13 et 2% + 4% = 1§ on utilise les
coordonnées angulaires pour la masse my

r, = ll sin 91 (55)
Yy1 = —ll COS 01 (56)
et pour la masse mo
r9 = x1+lasinfy =11sinf; + losin by (57)
Yo = y1 —lacosly = —lj cosf — Iy cosby (58)

Le lagrangien ne dépends que des angles 61 et 62 donc les équation d’Euler-
Lagrange sont

d 0L oL
&t 06, 06, (59)
d 0L oL
@t o6, _ 06, (60)
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On obtient alors le systéme suivant
(m1 + mg)l%él + malyls COS(91 — 92)é2 (61)
+ malyls sin(91 — 02) (92)2 + (m1 + mg)gh sin(@l) =0,
et

mgl%éQ + malyla cos(f1 — 92)é1 (62)
+ mslils Sin(eg — (91) (91)2 + magls Sin(92) =0.

b) Sous Uhypothése d’un angle initial 0y suffisamment petit, écrire les équation du
mouvement dans l’approximation des petits déplacements. Pour de petits déplace-
ments cos(z) ~ 1 et sin(x) ~ x et en ne conservant que les termes du premier
ordre en les angles et leur variations temporelles on trouve le systéme suivant

(m1 + mQ)Z% malils 91 _ (m1 + mQ)gll 0 01 (63)
mgl1l2 mgl% 62 0 m2glg 92

c) Résoudre les équations du mouvement. On suppose les condition initiales suivantes
91(0) = 90, 92(0) =0 et 01(0) = 92(0) =0.

Si on pose la masse réduite po = ma/(my + mz) le systéme prend la forme

(i) @)= () 2

Les valeur propres de la matrice
-1 -1 -1
L N2l2>) g < Iy —p2 1y >
M = = _ ° 65
9<<l1 I 1— 1o _121 121 (65)

1+ 15+ \/(lg — l1)2 + 4po lylo
2l1l2(1 — ,U,Q)

w_ = J = 29 (66)
wililo(L—=p2) Iy +lo+ /(o — )2+ 4pz lils ’

sont

les vecteur propres associées sont

B i) B

1
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La matrice P = (v4,v_) est la matrice de passage telle que

M=p! (“’J wo_) P (68)

En posant

La solution générale s’écrit

a1(t) = c1cos(wyt)+ sysin(wyt)
as(t) = cacos(w_t)+ sgsin(w_t), (70)

soit

<91(t)> _p <01 cos(wit) + s1 sin(w+t)> ' (71)

0o (t) cg cos(w_t) + sgsin(w_t)
Les conditions initiales donnent
116o
V(2 —1)% + 4pslyls

et c1 + co = 0 ainsi que s1 = s9 = 0.

Cl — —

14.3. L’atome d’hydrogénoide

On considére un atome Hydrogénoide, obtenu en arrachant & un atome tous ses
électrons sauf un. Ces atomes se comportent comme un atome d’Hydrogéne avec un
noyau de charge électrique réduite Z > 1.

L’électron est soumis au potentiel
Ze?

Vi) = _471'607' (73)

a) Donner l'expression du Lagrangien du systéme en coordonnées sphériques Le La-
grangien est la différence de ’énergie cinétique et potentiel de I’électron donc

Ze?
dreqr

L=T+ (74)

Comme le Lagrangien est invariant par rotations on passe en coordonnées sphé-
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b)

14.3. L’atome d’hydrogénoide

riques
Fo= ri, (75)
ar dr do . do
o = Cﬁur—i—r((ﬁug—&—smﬁiud)) . (76)
En utilisant la notation r = %, le Lagrangien prend la forme
. . 72
L= % (72 + 1262 + 12 sin? 04?) + ﬁ . (77)
Obtenir les équations d’Fuler-Lagrange. Les moments conjugués sont
oL .
pro= oo =mi (78)
oL 24
Po 9 (79)
L
= — =mr°sin“f0¢. 80
Po 9% ¢ (80)
Pour la cordonnée radiale r on a I’équation d’Euler-Lagrange
dpr 8E N2 .2 52 262
dt or mr (67 + sin”6¢7) Ameqr? (81)
Pour la coordonnée angulaire 6 on a I’équation d’Euler-Lagrange
dpg 0L mr? . 5
0= T Gin(20)42. 2
it~ ag - g SmEe (82)
Pour la coordonnée angulaire ¢ on a I’équation d’Euler-Lagrange
dpy 0L
— =—=0. 83
dt 0¢ (83)

Montrer l’existence de quantités conservées. Interpréter. Comme le potentiel est
central le moment cinétique total 7= 7 X m# est conservé, car

d d
ﬁj:Fx—t(mf):FX—zo (84)

car pour un potentiel central % x T

On constate que py le moment conjugué a l'angle ¢ est une quantité conservée.
C’est une conséquence du fait que le Lagrangien est indépendant de la variable ¢.
Elle se traduit par l'invariance par rotation du systéme autour de I'axe Oz. On
vérifie que la quantité conservé est la projection du moment angulaire 7= 7 x mi
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sur cet axe
Py = j : ﬁz (85)
ou l'on a utilisé que %, = cos i, — sin Oy.

L’énergie du sytéme est conservée par le lagrangien ne dépend pas du temps.

Et finalement, le vecteur de Runge-Lenz est conservé.

14.4. Pendule sphérique

On consideére une masse m attachée o l’extrémité d’une tige rigide de masse négli-
geable, Uautre extrémité étant fize par rapport au laboratoire. La longueur de la tige
est R. On note ¢ la colatitude (le pole de la sphére étant choisi a la verticale de son
centre) et 0 la longitude (cf. figure .

FIGURE 1. — Schéma d’un pendule sphérique et photographie d’'un manége fonction-
nant selon le principe du pendule sphérique.

a) Ecrire le Lagrangien pour le pendule sphérique.

L’énergie cinétique du pendule est

T=2 @+ +47), (86)
I’énergie potentielle
V =mgz, (87)

La contrainte du mouvement sur une sphére de rayon R est

RP=a 442 +22 (88)
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14.4. Pendule sphérique

en utilisant les angles d’Euler

x = Rsinfcosyp (89)
= Rsinfsingp (90)
z = Recosb, (91)
on en déduit le Lagrangian
L = T-V (92)
mR? D)2, 52
= 5 (9 + (sin6)“p ) —mgRcosf. (93)

b) En déduire que v, définit dans la figure @ est une variable cyclique. Quelle est la
quantité conservée associée ? Trouvez l'autre quantité conservée.

Le Lagrangien est indépendant de ¢ donc

oL

Dy = 9% = mR*(sin0)? ¢ (94)

est une constante du mouvement conservée dans le temps.

L’autre quantité conservée est ’énergie car le Lagrangien ne dépend pas du temps
(c’est la fonctionnelle de Beltrami discutée en PC3 appliqué au cas a deux va-
riables)

. 2 .
H = 92? c,bgé — L= % (92 + (sin 0)29232) + mgRcos. (95)

c) Montrer que l’angle 0 satisfait une équation de la forme
de
— = f(0, E1, E9) (96)
dt
ot f est une fonction (que l'on explicitera) de 0 et de deux constantes du mouve-
ment E1 et Eo (que l'on interprétera).

Puisque I’énergie est conservée alors

L 2K 2
62 = mi; - Eg cos 0 — (sin §)2> (97)

mais (sin0)?¢? = p,,/(mR?) donc

] 2H 29 Py
0=|—5— —=cosl — ———5— 98
(mR2 R T m2Risin2g (98)

SIS
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15. Corrigé du second devoir a la
maison (2012)

Devoir donné en 2012
Relativité restreinte (PHY 431)
Pierre Vanhove
Avis au lecteur :
Dans ce texte les questions sont italiques, les solutions sont en caractéres droits.

15.1. Equation de Maxwell et sources

Le rang de covariance d’un tenseur est augmenté d’une unité par l’action de [’opé-
rateur O de « composantes » {0, =0,1,2,3} = (%,6) Le tenseur métrique (.
ou son inverse n*" ) et le tenseur antisymétrique de Levi-Civita (€u,ps ou e"P? avec
23 =1 = —e0123) peuvent aussi étre utilisés pour engendrer de nouveauz tenseurs
ou scalaires (invariants) a partir de tenseurs préalablement définis.

St l'on considére le tenseur de Faraday ¥ décrit le champ électromagnétique. Ses
composantes F,,, forment la matrice suivante :

0 E./c Ey/c E./c
| —-Ez/e 0O -B. B,
Fw=1_pJc B. 0 -B | M)

~E.Jc =B, B, 0

alors

FH = ghvro 0, F - (2)

a) Montrer I’équivalence
Ft=0<+= 0,F,p+0,Fy, + 0,F, =0 (3)

1

FH = g7 9, F,, = gguupa (8,F,p + 0y Fp + 0,F,) (4)

Comme )
6 SWW\F}\ = OuFup + OvFpu + OpF (5)

on en déduit .

Remarque nous aurions pu travailler sans expliciter les coordonnées en posant
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F, = Fte, (6)
dF = (0uFp+0,Fyu +0,F,)e" e’ ®e’ (7)

il faut alors montrer que F; = dF. Nous avons
1
F = 3 (OuFyp + OvFpy + 0,F,,) €7 e, (8)

il suffit de réaliser que
e, =3e'®e" @e’. (9)

On a vu en PCH que cette équation implique les équations de Mazwell suivantes

V-B = 0 absence de monopoles magnétiques (10)
-~ OB
Vx E+ il 0 loi de Faraday (11)

b) Veérifiez les expressions des invariants relativistes du champs électromagnétique

o, Vo _ EQ o2

nen Ful/Fpa = -2 CT_B , (12)
8 4

Sy Py = ——E - B (13)

Sous une transformation de Lorentz A nous avons vu en PC7 que

Fl, = Fp AP A7, (14)

donc
L = """ AAP AN FopFls (15)
Iy = ™ ACNPATNS FupgFls (16)

Mais
" AN, =0T (17)

car la transformation de Lorentz préserve la métrique (ou de maniére équivalente
le produit scalaire entre deux quadri-vecteurs) comme nous l’avons vu en PC3.
Donc

L ="  FpF.s. (18)

Maintenant remarquons que

M7 AN PALTALD = (det A) 2P0 (19)
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15.1. Equation de Maxwell et sources

Pour prouver cette identité, choisissez des valeurs de «, 5,7, d et utiliser la défini-
tion du déterminant d’une matrice comme une somme alternée sur les permutations
Sy de (1234)
det A =) [0] Ayg(1)Aas(2) Aso(3) Mo (20)
o Gy

les valeurs de £*¥P? correspondent a la signature de la permutation (1234) —
(uvpo). Comme les transformations de Lorentz ont det A = 1 puisque nous sommes
dans la composantes SOTT(1,3) du groupe des transformations (cf. PC3), et I
est bien un invariant relativiste.

Montrons maintenant 1’équation ({16]).

Iy = 8(e"FyFas + "B FoaFis + "2 Fpg Foy) (21)
E E E
= s (% - 2my) - T (22)
C C

¢) Montrez que l’équation

O F" = po 3", (24)

implique les équations de Maxwell avec sources

V-E = 2 loide Gauss (25)
€0
_ = 10E o
VX B-— ag = HoJ loi d’Ampére (26)

o o et ; sont les densités de charge et de courant (rappel : poeoc® =1).

Tout d’abord spécifions v = 0. Nous avons la suite d’équivalences suivante

o M= g’ (27)
= OF" = pco (28)
Ei
= &'? = poco (29)
— V.E = Eg. (30)
0

95



15. Corrigé du second devoir & la maison (2012)

pour v =i avec ¢ = 1,2, 3 on a la suite d’équivalence suivante

" = juoj’ (31)

= GFY" +9;FI" = ppj (32)
o0 E | i

oty ¢ T 4B = moi (33)
1 OF" ER— p

~ 5 t(VX D) = poj (34)

d) Montrer que J = {j*,v = 0,1,2,3} := (cg,j: Qf)') sont les composantes d’un
quadrivecteur J, dit de densité de courant, si la charge électrique est invariante
sous les transformation de Lorentz.

Comme J = g(¢, ¥) = o U puisque g est invariant de Lorentz avec J est un quadri-
vecteur de méme nature que U.

Alternativement, comme nous savons que j* = pg Lo, F est comme la dérivée
d’un quadri-tenseur est un quadri-tenseur, alors j# sont les composantes d’un
quadri-vecteur.

On peut aussi écrire ces équations sans expliciter les indices en introduisant
d«F:=0,F"e, (35)
Alors 'équation de Maxwell avec source s’écrit
d*F = po+J. (36)

En utilisant le tenseur € on montre que

6 1" e,x pe O FP° = B, FH (37)

Sinon pose
*F = "7 F,ef ®e’ (38)
*J = % P Jyef @ e’ @ e (39)

Les équations de Maxwell sans sources et avec sources s’écrivent alors
dFF = 0 (40)
d+xF = poxJ. (41)

e) Montrer que les équations inhomogénes de Mazwell imposent [’équation de conti-
nuité
= 4+V-j=0. (42)
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15.1. Equation de Maxwell et sources

La divergence de donne

—

1= = = -
— 5V OE=mV ] (43)
la dérivée temporelle de donne
|
8,5V B =— (9tg (44)
€0
en combinant ces deux équations on obtient la relation de continuité demandée.

Ecrire cette équation en utilisant le quadri-vecteur J. Obtenir cette équation direc-
tement a partir de (24)).

Cette équation s’écrit simplement
Oet(cp) + 035" = 0, J" =0 (45)
En dérivant on obtient
00, F* = 1190, J" (46)

mais comme F* est antisymétrique le membre de gauche est nul.

En utilisant les notations introduites dans (39)) cette équation s’écrit simplement
comme

(dxJ)=0. (47)

Nous avons vu en PC5 que les équations homogénes de Mazwell dans (3)), ou de

maniere équivalente - sont satisfaites si F,, résulte d’une forme de potentiel

A

= (A%¢, A) selon
F, = 0,A, — 0,A,. (48)

Nous avons vu que A est défini a la dérivée d’une fonction arbitraire prés

A — A"+ Vy (49)

Nous avons vu aussi que pour fizer cette liberté de jauge, on impose une contrainte.

Un contrainte invariante de Lorentz est la jauge de Lorenz

9)

B A" =0, (50)

Montrer que dans cette jauge les équations de Mazwell inhomogénes deviennent
OA = Ho J7 (51)

o O := 0,0" = C%g—; — A\ est lVopérateur d’Alembertien.

97



15. Corrigé du second devoir & la maison (2012)

On applique
0, F" = 0,(0"A” — 9V AF) = 0,0"'A” = A" . (52)

15.2. Effet de seuil

On considere la réaction de désintégration d’un pion = sur un proton p+ considéré
au repos dans le repere du laboratoire
™ +pt = K%+ A° (53)
Le méson pion ©~, composé par la pair de quark ud, a une masse m,-c? =
140 MeV. Le baryon proton, composé des trois quarks uud, a une masse mp+c2 =
938 MeV. Le méson kaon K°, est une superposition des états lices des pairs de quarks
ds et ds. Il a une masse de myoc? = 498 MeV. Finalement, le baryon A°, composé
des trois quarks uds, a une masse de mpao = 1116 MeV.

a) Calculez I'énergie de seuil du pion pour la réaction puisse avoir liew

En considérant le quadri-impulsion initiale Ptale — P __ 4 P+

s = (Pimitiale)? — (;m2_ 4 m2 ) + 28+ Epr > (Mo +mp0)>c? (54)

2

comme &,+ = my+c” car le proton est au repos. On a donc I'inégalité suivante

Mo + mpo)2 — (m2_ + m?2
£7r7 > ( KO AO) ( T p+) C2 (55)

2mp+

donc
Er— >909.14MeV (56)

Dans une expérience ot le pion a une énergie cinétique incidente de 2.36 GeV, le
baryon A est observé avec une énergie cinétique de 0.15 GeV, et dans une direction
a 45° par rapport au mouvement du pion. On rappelle que 1 GeV= 103 MeV.

b) Calculez le facteur Y™ dans le repére du centre de masse. La quadri-impulsion
initiale

e £7r_+mp+ 2
sztzal — Pﬂ_i + Per = c . (57)
Pr— laboratoire
Pour passer dans le référentiel du centre de masse
pinitial _ [ 111€
("), (58)
avec o

s = (Pl — (mye)? = (m2_ + mfﬁ) A+ 26 -myr . (59)
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Dans le référentiel du laboratoire la quadri-impulsion a pour composantes

pinitial _ ,CM <mi0> , (60)
p laboratoire
on en déduit donc P )
-+ myrc
CM ™ P
= 61
— (61)
Comme ’énergie du Pion est de
e = Trm +my—c? =2503.92 MeV (62)
mic® = 2365.75 MeV (63)
donc
M = 1455 (64)

¢) Calculez lénergie cinétique du kaon K° dans le repére du laboratoire et du centre
de masse.

Comme P, + P,+ = Ppo + Pgo alors

(Pro —Ppe)® = (mio+m2y)c® — 280 mye (65)
= (mRo+m2-)c® —2(Epo Ex- — Pro - D) (66)
Alors
(migo + m;—x— - mio - mi—) A+ 2(Epo Ex— — Pa0 * D)
2my,+
Cette relation est équivalente a la conservation de I’énergie
E— + 5p+ =Epo + Exo (68)
Si on utilise la conservation de I'impulsion p,.- = pro + Pro et que Ego = m%(()c4 +
]5%(002. L’énergie du A° dans le référentiel du laboratoire est
Epo = 1267.1 MeV . (69)
ainsi que
Apro = Exo —miect = (600 MeV)? (70)
Apil = . —mi ¢t = (2500 MeV)? (71)

avec Pr— - pro = |pr—| [pao| cos(m/4) =~ (1030 MeV/c)?. Donc I'énergie cinétique vaut
Trco = Ego — myoc? = 1680.43 MeV (72)

Dans le référentiel du centre nous avons que
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ECM 4 cCM
pinitial _ (W(L)tc> — p/final _ M (73)
oM 0
or en utilisant que 15/(\%\/[ = —]5%})4 on a la relation suivante
(5/(\%\/[)2 = mioc4 + (13%\4)2 (74)
= (mio —mi) ¢! + (£501)° (75)

I’énergie cinétique valent

2 2 2
My + Mo — Myo o

e = ? =9721MeV (76)
me
T = EQ —mgoc® = 4741 MeV . (77)

15.2.1. Contexte historique et expérimental

Depuis leur découverte en 1947 les Kaons ont €té une source d’information im-
portante sur la nature des interactions fondamentales. Ils ont joué un réle important
dans la compréhension du modéle des quarks. Les Kaons portent un nombre quantique
d’étrangeté S, induit par Murray Gell-Mann (Nobel 1969) et Kazuhiko Nishijima. Ils
introduisirent ce nombre quantique pour expliquer la facile production des Kaons et
leur désintégration plus lente que ce qui est attendu compte tenu de leur masse. Ce
nouveau nombre quantique d’étrangeté est postulé étre conservé lors des collisions
(comme pour celle donnée ci dessus), mais pas lors de la désintégration de la parti-
cule.

Un autre particularité du Kaon neutre K9 est d’avoir une antiparticule violant la
symétrie de parité. La Kaon court K% = (ds + sd)/v/2 a un temps de vie de deuz
ordre de grandeur inférieur a celui du Kaon long K9 = (d5 + sd)/+/2. Ces particules
sont leur propre antiparticule.

C’est en utilisant des Kaons qu’a été découverte de la violation de la symétrie CP,
responsable de l’asymétrie entre matiére et antimatiére dans 'univers. Cette expé-
rience a re¢u le prix Nobel en 1980.

15.3. Pendule sphérique
On considére une masse m attachée a lextrémité d’une tige rigide de masse négli-
geable, Uautre extrémité étant fixe par rapport au laboratoire. La longueur de la tige

est R. On note ¢ la colatitude (le pole de la sphere étant choisi a la verticale de son

centre) et 0 la longitude (cf. figure[1]).

a) Ecrire le Lagrangien pour le pendule sphérique.
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b)

15.3. Pendule sphérique

FIGURE 1. — Pendule sphérique

L’énergie cinétique du pendule est

m
T=7 @+ +4, (78)

I’énergie potentielle
V =mgz, (79)

La contrainte du mouvement sur une sphére de rayon R est

R? = a2+ + 2° (80)

en utilisant les angles d’Euler
x = Rsinfcosyp (81)
= Rsinfsingp (82)
z = Recosb, (83)

on en déduit le Lagrangian
L = T-V (84)
mR? N2 2

= (9 + (sin)“¢ > —mgRcosf. (85)

En déduire que ¢ est une variable cyclique. Quelle est la quantité conservée asso-
ciée ¢ Trouvez lautre quantité conservée.

Le Lagrangien est indépendant de ¢ donc

Py = gi = mR?(sin p)? ¢ (86)

est une constant du mouvement conservée dans le temps.
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L’autre quantité conservée est ’énergie car le Lagrangien ne dépend pas du temps

H = 0%+@8_¢_ = (0 + (sinf)“¢ ) +mgRcos@. (87)

¢) Montrer que l'on a
do
— = f(6, Er, E») (88)
dt
ot f est une fonction (que l’on explicitera) de 0 et de deux constantes du mouve-
ment Ey et Ey (que l'on interprétera).

Puisque I’énergie est conservée alors

0% = 737;2 - ZEg cos § — (sin 0)%p? (89)
mais (sin0)?¢? = p,/(mR?) donc
1
. [ 9H 2 po \2
Hz(m—m—ECOSH—mEQ) (90)

La résolution de cette équation s’exprime au moyen de la fonction elliptique de
premiére espéce F'(x, k)

o(t) dx 2iA x x 2 o
t=A = sign(sin( = ))F [cos|(=),y/——
6 /B+cos(z) V1-B ign(si (2>) ( (2) 1—B) "
(91)

ol B = migR - 277’;“;1% et A=+/R/(29).
Les fonctions elliptiques ont été introduites par Jacobi, Legendre et d’autre pour la

résolution des équations différentielles des systémes physique comme les pendules.

Les manéges sont des pendules, et certains de pendules sphériques comme sur la
photographie ci-dessous

FIGURE 2. — Maneége fonctionnant comme un pendule sphérique
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16. Corrigé du second devoir a la
maison

donné en 2013
Relativité restreinte (PHY 431)
Pierre Vanhove
a rendre en PC 8 (11/01/2013)
Avis au lecteur :
Dans ce texte les questions sont italiques, les solutions sont en caractéres droits.

16.1. Equation de Maxwell et sources

Le rang de covariance d’un tenseur est augmenté d’une unité par ’action de [’opé-
rateur O de « composantes » {0y, =0,1,2,3} = (%,6) Le tenseur métrique (.
ou son inverse N ) et le tenseur antisymétrique de Levi-Civita (€u,ps ou eMP? avec
2B =1 = —e0123) peuvent aussi étre utilisés pour engendrer de nouveaur tenseurs
ou scalaires (invariants) a partir de tenseurs préalablement définis.

St l'on considére le tenseur de Faraday ¥ décrit le champ électromagnétique. Ses
composantes F,,, forment la matrice suivante :

0 E*/c EY/c E?/c
| —E%/c 0 -B. By
P = —EY/e B, 0 -B,| )

—~E*/c -B, B, 0

alors

FF = g, F, . (2)

a) Montrer I’équivalence
Fl=0<+= 0,F,,+0,Fp+0,F, =0 (3)

1

Ft =P, F,, = §6WPU (OuFvp + OvFpy + OpF) (4)

Comme )
G EwpnFr = 0uFyp + 0, F oy + 0,F (5)

on en déduit .
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Remarque nous aurions pu travailler sans expliciter les coordonnées en posant

F, = Fle, (6)
dF = (0,F,) +0,Fyu +0,Fu)e" Ne' Nef (7)

il faut alors montrer que ¥; = dF. Nous avons

1
Fl - g (8HFllp + apr'u, + 8PF/“’) E;U/pO' eu (8)

il suffit de réaliser que
e, =3e" Ne" Nel. (9)

On a vu en PC5 que cette équation implique les équations de Maxwell suivantes

V-B = 0 absence de monopdles magnétiques (10)
- 0B
V x E+ % - 0 loi de Faraday (11)

b) Vérifiez les expressions des invariants relativistes du champs électromagnétique

E?
nﬂanUFMVFpO_ = =2 072 — B , (12)
v 8= =
e FyF, = ——E-B (13)
c
Sous une transformation de Lorentz A

F;/W = Fpa Aup A (14)

donc
L = 70" AOAPA NS FopFls (15)
I, = Saded AuaAyﬁAp'yAa(s FaBF'yé (16)

Mais
T AN = (17)

car la transformation de Lorentz préserve la métrique (ou de maniére équivalente
le produit scalaire entre deux quadri-vecteurs) comme nous 'avons vu en PC3.
Donc

L =P F,5F,s. (18)
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16.1. Equation de Maxwell et sources

Maintenant remarquons que
eMP AN AN, = (det A) P70 (19)

Pour prouver cette identité, choisissez des valeurs de «, 3,7, 0 et utiliser la défini-
tion du déterminant d’une matrice comme une somme alternée sur les permutations
Sy de (1234)

det A = Z o] Ao (1)A20(2) Aso(3) Ao () (20)

o G4

les valeurs de e"”P? correspondent a la signature de la permutation (1234) —
(uvpo). Comme les transformations de Lorentz ont det A = 1 puisque nous sommes
dans la composantes SO*T(1,3) du groupe des transformations (cf. PC3), et I
est bien un invariant relativiste.

Montrons maintenant 1’équation ({16]).

I, = 8 (80123F()1F23 + 50213F02F13 + 80321F03F21) (21)
E E E
= s (% cm) -2 - T (22)
_ _SE:pBgc + EyBy + Esz _ —8E B (23)
C C

c) Montrez que l’équation

" = po j", (24)

implique les équations de Mazwell avec sources

V-E = 2 loide Gauss (25)
€0
. 5 10E Lo \
V x B— el po7 loi d’ Ampere (26)

ot o et T sont les densités de charge et de courant (rappel : pgegc® = 1).

Tout d’abord spécifions v = 0. Nous avons la suite d’équivalences suivante

o M= g’ (27)
= OF" = pco (28)
Ei
= &'? = poco (29)
— V.E = 2. (30)
€0
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16. Corrigé du second devoir & la maison

pour v =i avec ¢ = 1,2, 3 on a la suite d’équivalence suivante

OuF" = st (31)

<~ 80F0i+8iji = ,u,oji (32)
o B

_a(ct)?ﬂ]kajBk = HoJ (33)
1 OF" ER— p

_Cﬁﬁ‘{'(vXB) = HoJ (34)

d) Montrer que J = {j”,v = 0,1,2,3} := (co,J7= 07 ) sont les composantes d’un
quadrivecteur J, dit de densité de courant, si la charge électrique est invariante
sous les transformation de Lorentz.

Comme J = £(¢,0) = %U puisque U est invariant de Lorentz il faut montrer
que o/ est invariant de Lorentz. On dit que la charge @ est invariante donc la
densité de charge o = dQ/dV est sensible a la contraction des longueurs. Sous une
transformation de Lorentz dV' — dV/~, et le facteur  est justement présent pour
compenser cet effet sur la densité de charge.

Alternativement, comme nous savons que j* = pg Lo, M est comme la dérivée
d’un quadri-tenseur est un quadri-tenseur, alors j* sont les composantes d’un
quadri-vecteur.

On peut aussi écrire ces équations sans expliciter les indices en introduisant
d+«F:=0,F"e, (35)
Alors I'équation de Maxwell avec source s’écrit
d*F = po*J. (36)

En utilisant le tenseur € on montre que

6 € eorpoOp FP7 = 0, FH . (37)
Sinon pose
*F = P F e’ ®e’ (38)
1
*J = 1 P’ Jyef @ e’ ® e’ (39)

Les équations de Maxwell sans sources et avec sources s’écrivent alors

dFF = 0 (40)
d+xF = poxJ. (41)
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16.1. Equation de Maxwell et sources

e) Montrer que les équations inhomogénes de Mazwell imposent l’équation de conti-

nuité 9
0 & -
—+V.7y=0 42
5 TV (42)
La divergence de donne
le o2 =
—gv-atE:uov-j (43)

la dérivée temporelle de donne
|
6tV B = : &gg (44)
0

en combinant ces deux équations on obtient la relation de continuité demandée.

f) Ecrire cette équation en utilisant le quadri-vecteur J. Obtenir cette équation direc-
tement a partir de (24)).

Cette équation s’écrit simplement
Oet(cp) + 0ij" = 0" =0 (45)
En dérivant on obtient
0,0, FM = 190, J" (46)

mais comme F* est antisymétrique le membre de gauche est nul.

En utilisant les notations introduites dans cette équation s’écrit simplement
comme

(dxJ)=0. (47)

Nous avons vu en PCSH que les équations homogénes de Mazwell dans (3|), ou de
maniére équivalente — sont satisfaites si F,, résulte d’une forme de potentiel
A = (AY/¢, A) selon

Fu =0,A, —0,A,. (48)

Nous avons vu que A est défini a la dérivée d’une fonction arbitraire prés
A= A+ Vy (49)

Nous avons vu aussi que pour fixer cette liberté de jauge, on impose une contrainte.
Un contrainte invariante de Lorentz est la jauge de Lorenz

0, A" = 0. (50)
g) Montrer que dans cette jauge les équations de Mazwell inhomogénes deviennent

OA = pod, (51)
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16. Corrigé du second devoir & la maison

ou O := 0,0" = c%g—; — A est Uopérateur d’Alembertien.
On applique
O F* =0, (0" A” — 9V AF) = 0,0"'A” = A" (52)

16.2. Géodésique sur la sphere

On veut déterminer le chemin le plus court entre deux points sur une spheére de
rayon R.

a) Si s est un paramétre le long de la courbe exprimer la longueur du chemin selon
sSB X
1= [ 1w s, (5)
54
L’arc élémentaire a une longueur
da? + dy* + dz* = (% + §* + 2%) ds? (54)

donc la fonctionnelle est

f(7, 7 s) = \/1; (55)

b) Afin de tenir compte de la contrainte que le mouvement s’effectue sur une sphére
de rayon R on modifie cette fonction en introduisant un multiplicateur de Lagrange
wu(s), et l'on cherche a minimiser

1= | P ) — ult) (7 7)) ds. (56)

Donner ’expression de h(T, 7 s) = T
la contrainte 72 = x(s)? 4 y(s)? + 2(s)? = R? on considére la fonctionnelle

h(FFis) = Vi = p(s) (7~ B?). (57)

c) En déduire que le chemin le plus court est un grand cercle passant par les points
A et B. L’équation d’Euler-Lagrange pour x donne

oh

doh_d___ & (59)

%83}_038 ,/¢2_|_y2+732'

Avec des équation similaires pour y et z. En notation vectoriel nous avons

d 7

dsfg

= —2u7. (60)
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16.3. L’atome d’hydrogénoide

On voit que 7 est colinéaire au vecteur de norme unité @ := 7#/V 72. On en déduit
que

d dr du
dS(rxu) Lo g+ix =0, (61)

ds ds
Ou l'on a utilisé que 7 x d“

= 0 comme conséquence de (60). Par définition 4 et
dr’/ds sont colinéaires donc Z—’; x 4 = 0. Ainsi le long de la trajectoire entre les
points A et B le vecteur 7 X 4 est constant. Les vecteurs 7" et & sont dans le plan

équatorial passant par A et B. Cela donne deux cercles, un seul est le plus court.

16.3. L’atome d’hydrogénoide

£ .3 %o
va (aen) -ay3

Cokod frce - 2-Zoe =5 7 CE4)- 74093,

FIGURE 1. — manuscrit de 'article de Niels Bohr de juillet 1913 (avec la permission
de I’« Archive Niels Bohr », Copenhague)

On considére un atome Hydrogénoide, obtenu en arrachant & un atome tous ses
électrons sauf un. Ces atomes se comportent comme un atome d’Hydrogéne avec un
noyau de charge électrique réduite Z > 1.

L’électron est soumis au potentiel

Ze?

Vi) = _47'('607“ (62)

a) Donner l'expression du Lagrangien du systéme en coordonnées sphériques Le La-
grangien est la différence de I’énergie cinétique et potentiel de I’électron donc

Ze?

. 63
4megr (63)

E=%#+

Comme le Lagrangien est invariant par rotations on passe en coordonnées sphé-

109



16. Corrigé du second devoir & la maison

riques
¥ = ri
dr dr n (d9 T+ s edqﬁ .
— = —Ur+r(—1u inf— .
dt dat " Nde Y e ?
En utilisant la notation r = %, le Lagrangien prend la forme
. . 72
£L=" (24022 412 sin? 047 + .
2 4megr

b) Obtenir les équations d’Euler-Lagrange. Les moments conjugués sont

= %—mf“
bro= % =
Py = ((;g:mi“zé
Py = Zg:mfzsiHQGd

Pour la cordonnée radiale r on a I’équation d’Euler-Lagrange

Ze?
dmegr?

dp, 0L 2 202
Tl = mr (6° 4 sin” 6¢~)

Pour la coordonnée angulaire 6 on a I’équation d’Euler-Lagrange

d oL mr? .
% = % = T Sln(29)¢2 .

Pour la coordonnée angulaire ¢ on a I’équation d’Euler-Lagrange

dps _ 0L _
dt 99

c) Montrer Uexistence de quantités conservées. Interpréter. On constate que py le
moment conjugué & l'angle ¢ est une quantité conservée. C’est une conséquence
du fait que le Lagrangien est indépendant de la variable ¢. Elle se traduit par
I'invariance par rotation du systéme autour de 'axe Oz. On vérifie que la quantité

conservé est la projection du moment angulaire 7= 7 X m# sur cet axe

qu:j'ﬁz

ou l'on a utilisé que @, = cos i, — sin Ouy.
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16.4. Pendule sphérique

16.4. Pendule sphérique

On considére une masse m attachée a lextrémité d’une tige rigide de masse négli-
geable, Dautre extrémité étant fize par rapport au laboratoire. La longueur de la tige
est R. On note ¢ la colatitude (le pole de la sphere étant choisi a la verticale de son

centre) et 0 la longitude (cf. figure [1]).

FIGURE 2. — Schéma d’un pendule sphérique et photographie d’'un manége fonction-
nant selon le principe du pendule sphérique.

a) Ecrire le Lagrangien pour le pendule sphérique.

L’énergie cinétique du pendule est

T:%(d:2+1)2+z'2), (74)
I’énergie potentielle
V =mgz, (75)

La contrainte du mouvement sur une sphére de rayon R est

R? =% 4+ y* + 2° (76)
en utilisant les angles d’Euler
x Rsin 6 cos p (77)
y = Rsinfsing (78)
z = Rcosf, (79)
on en déduit le Lagrangian
L = T-V (80)
2 .
- mf (92 + (sin 9)%2) — mgRcos 0. (81)
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16. Corrigé du second devoir & la maison

b)

En déduire que @, définit dans la figure @ est une variable cyclique. Quelle est la
quantité conservée associée ¢ Trouvez l'autre quantité conservée.

Le Lagrangien est indépendant de ¢ donc

Py 1= gfp = mR%(sin0)? ¢ (82)

est une constante du mouvement conservée dans le temps.

L’autre quantité conservée est ’énergie car le Lagrangien ne dépend pas du temps
(c’est la fonctionnelle de Beltrami discutée en PC4 appliqué au cas a deux va-
riables)

(92 + (sin 0)2<,b2> +mgRcos. (83)

Montrer que l’angle 0 satisfait une équation de la forme

do

— = f(0, B, E») (84)
dt

ot f est une fonction (que l’on explicitera) de 0 et de deux constantes du mouve-

ment E1 et Ey (que l'on interprétera).

Puisque I’énergie est conservée alors

2H 29 cos ) — (sin 0)%p? (85)

o
b ~ mR?2 R

mais (sin 0)2p? = p,,/(mR?) donc

1
. 2H 29 Dy 2
0= — — <2 0 —

(mR2 R m2Risin?0 (86)
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16.4. Pendule sphérique

partCompléments : exercices non donnés, etc.
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17. Suppléments

Relativité restreinte (PHY 431)

Pierre Vanhove

Dans ce chapitre sont réunis les exercices qui n’ont pas été donnés ou traités en PC.

Les exercices sont ici des textes bruts non travaillés souvent copiés de ceux données
par Cédric, Francis ou Marios.

17.1. Vitesse, célérité et rapidité

On peut définir trois vitesses différentes associées au mouvement relatif du référen-
tiel R’ par rapport au référentiel R : la vitesse (réduite) 8 = v/c, la rapidité ¢(v), et
la célérité v B = sinh ¢(v).

a) Rappeler a quoi correspondent vitesse réduite et célérité.

Afin de déterminer un procédé expérimental pour mesurer la rapidité on considére
un astronaute dans un vaisseau sans ouvertures. On suppose que cet astronaute est
muni d’un accélérométre (un fil 4 plomb par exemple). A linstant initial la fusée
est au repos par rapport & un repére fixe de référence R formés par des étoiles fixes
lointaines. A la fin de la phase d’accélération la fusée a une vitesse V.

On dénotera R’ le référentiel de la fusée & un instant donnée de son mouvement.
Ce référentiel n’est plus galiléen car accéléré.

A un instant donné la fusée a une vitesse v par rapport au repére fixe R. Pendant
I'intervalle de temps propre dr infinitésimal la vitesse de la fusée s’accroit de dv’ par
rapport a son référentiel R’.

b) Déterminer l'accroissement de vitesse dv’ mesurée dans la fusée par I'astronaute,
en fonction de l'accroissement vitesse dv par rapport au repére fixe R.

c¢) Montrer que l'intégrale [ adr pendant la phase d’accélération donne la rapidité.

d) Interpréter le résultat. A quoi correspond la rapidité en physique galiléenne non
relativiste.

17.1.1. Correction : Vitesse, célérité et rapidité

On peut définir trois vitesses différentes associées au mouvement relatif du référen-
tiel R’ par rapport au référentiel R : la vitesse (réduite) 8 = v/c, la rapidité ¢(v), et
la célérité v 8 = sinh ¢(v).
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17. Suppléments

a) La vitesse réduite [ est la vitesse de l'origine du référentiel R’ par rapport au
référentiel R donnée par

== M)

La célérité est définie par dz/cdt’ mais comme dt’ = dt/v on a

dx dx
— =y — = =sin¢(v). 2
et i 0 ¢(v) (2)
b) Pendant un intervalle de temps propre cdt’ pour la fusée, la vitesse de la fusée par
rapport au référentiel fixe passe de v & v+ dv. L’accroissement de vitesse est donné

par
v+dv—v N dv

dv' = ~
1+ (U+d22)(_v) o %

(3)

¢) L’intégrale de dv’ pendant la phase d’accélération donne a revoir serieusement

v’ 1%
V= /0 dv' = /0 dvvz — ¢ tanh™! V_ cop(V) (4)

v c
-2

d) Interpréter le résultat. A quoi correspond la rapidité en physique galiléenne non
relativiste. 777

17.2. Champ électromagnétique et électrodynamique non
linéaire

On considére I’électrodynamique du vide. Au champ électromagnétique on associé
un tenseur d’énergie-impulsion

1 /1
TW:MO<477WFPUFPU+FWF;)V>7 (5)

a) Vérifier que ce tenseur est symétrique et qu’il est conservé 9,7" = 0. Pour cela
on utilisera I’équation , ainsi que les les équations du mouvement des potentiels
¢ et A trouvées dans 'exercise précédant et la condition de jauge @

b) Quels invariants relativistes peut-on construire avec les composantes du tenseur
de Faraday F*?

¢) Exprimer en fonction de E et B lénergie £ = [ d3x T et 'impulsion P! =
[d3xT%/c du champ.
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17.3. Effet Doppler-Fizeau transverse

On va s’intéresser maintenant au probléme de 1’électrodynamique non linéaire, ol
la dynamique du champ électromagnétique résulte de ’action de Dirac—Born—Infeld :

2 2
K FwF etpo B, F,
Sppt = ——— [d'z [y/1 o wlps ) 6
DBl LoC * \/ + 2k2 8k2 (6)
L N2
2 F2 _ 22 (E : B)
= " [ atdBa | \[1— ¢ 1 (7)

LoC K22 kA2

ol e"P7 est le tenseur totalement antisymétrique tel que 9122 = 1 et €% =signature
de la permutation (ijkl).

d) Montrer que cette derniére restitue laction de Maxwell-Faraday a la limite
E/c,B < K.

e) Montrer que cet expression implique l'existence d’un champs électrique limite.
Faire un paralléle avec ’action classique et relativiste d’une particule ponctuelle.

17.2.1. Contexte historique

Born et Infeld ont proposé cette action dans les années 1930 afin de supprimer le
probléme de I’énergie propre infinie d’un électron existant dans la théorie linéaire de
Maxwell. Cette action joue un réle important pour le description d’objet étendu (les
D-branes) en théorie des cordes.

17.3. Effet Doppler-Fizeau transverse

a terminer

A cause du phénoméne de contraction des longueurs les solides n’existent pas en
relativité restreinte contrairement au cas de la physique Galiléenne classique.

Les quanta de lumiére sont représentés par les photons. La correspondance
onde—corpuscule est traduite par la relation de de Broglie entre I'impulsion et la
longueur d’onde

p=x€ (8)

SR~

ou € est une vecteur unité selon la direction de propagation, et la relation de Planck
pour I’énergie

E=hv. 9)

Larelation E' = |p] ¢ implique la relation de dispersion entre la fréquence et la longueur
d’onde
Av=c. (10)
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17. Suppléments

Un signal lumineux est émis par une source S, en mouvement uniforme de vitesse
‘75 par rapport & un observateur O. En utilisant la loi de transformation du qua-
drivecteur énergie—impulsion pour les particules de masse nulle, montrer qu’il existe
un effet Doppler— Fizeau transverse, se produisant lorsque la réception du signal par
I'observateur a lieu perpendiculairement a la trajectoire de la source (€ L 175 , ol €
caractérise la direction de réception).

e Fournir la relation entre v (fréquence regue) et vg (fréquence émise).

e Déterminer I'aberration entre € (direction de réception) et €s (direction d’émis-
sion).

e Pourquoi cet effet est-il purement relativiste ?

17.4. Le cylindre en rotation

Un cylindre dont 'axe est confondu avec 'axe Ox du référentiel d’inertie R est
animé d’un mouvement de rotation autour de cet axe, de vitesse angulaire constante
w.

Montrer que dans le référentiel R/, en mouvement uniforme par rapport a R de
vitesse V = Ve,, le cylindre parait tordu autour de son axe, d'un angle o = % par
unite de longueur propre. Quelle est la vitesse angulaire mesurée dans R’ ?

17.5. Particule uniformément accélérée

FIGURE 1. — Vue de l'accélérateur linéaire du SLAC & Standford et de 'anneau du
LHC au CERN

Comme application de cette relation on se propose de calculer la vitesse acquise
dans un champ électrique uniforme. On admettra que si le champ électrique E est
uniforme et si une particule chargée a une vitesse paralléle a E alors son accélération
dans le référentiel instantané est constante et vaut qE/m (ot g est la charge de la
particule et m sa masse).

120



a)

b)

17.5. Particule uniformément accélérée

Quelle est la vitesse acquise par ’électron & la sortie du tube dans le cas classique
et relativiste ?

Exprimer le facteur de boost en fonction de la différence de la différence de poten-
tiel électrique entre 'entrée de 1’électron au repos et la sortie de I’électron accéléré.
Interpréter le résultat.

On s’intéresse a la collision d’un électron ainsi accéléré avec un positron au repos
dans le laboratoire. On appelle référentiel du centre de masse, le référentiel ou la
somme des impulsions des deux particules est nulle P’ = (E’/c,0). Déterminer la
vitesse B de ce repére par rapport & celui du laboratoire.

Calculer I'énergie E’ totale avant collision dans le repére de centre de masse.
Exprimer cette énergie en fonction de I’énergie E initiale de 1’électron accéléré.

Dans le tunnel du CERN, un anneau circulaire de 27 km de long, le LEP permet-
tait de faire tourner des faisceaux d’électrons et d’anti-électrons en sens inverse.
Le LHC permet maintenant d’y faire tourner des protons et des anti-protons. Cal-
culer I'énergie du systéme dans le référentiel du centre de masse. Pourquoi un tel
dispositif plutét qu'un accélérateur linéaire 7

A donner ou pas - est-ce trop long?

17.5.1. Effet Doppler-Fizeau

Les quanta de lumiére sont représentés par les photons. Cette correspondance

onde—corpuscule est véhiculée par les relations de Planck (E = hv) et de de Bro-
glie ( p'= €h/A o € est un vecteur unité caractérisant la direction de propagation).

a)

b)

Déterminer la relation entre la fréquence v et la longueur d’onde A

En utilisant la loi de transformation du quadrivecteur énergie- impulsion pour les
particules de masse nulle, retrouver 'effet Doppler—Fizeau et I’aberration pour un
observateur O qui regoit le signal lumineux émis par une source S en mouvement
par rapport & O, a vitesse VS.

Examiner les cas particuliers ou ’émission a lieu (i) parallélement (source s’éloi-
gnant ou se rapprochant) et (ii) perpendiculairement a la trajectoire de la source,
la notion de paralléle ou perpendiculaire se rapportant a l'observateur O (€ || ou
1 ‘75, ou € caractérise la direction de réception).

Quelles sont, dans les deux cas, les limites newtoniennes pour ces effets au premier
ordre en Vg/c?
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17.6. Calcul tensoriel

On considére la "métrique" de 'espace temps de Minkowsi, i.e. le tenseur deux fois
covariant, noté 7,, qui permet de calculer la "distance" infinitésimale ds entre deux
événements situés respectivement aux coordonnées z# et z# + Az*. On a (on utilise
partout la convention de sommation d’Einstein) :

ds? = nu, Azt Az” (11)

Dans un référentiel inertiel, on a

1 0 0 0
0 -1 0 0

=10 0 -1 o0 (12)
00 0 -1

ot on considére p comme un indice de ligne et ¥ comme un indice de colonne (dans
une notation matricielle). On considére ensuite la "métrique inverse" notée n*” et qui
vérifie par définition

N’ = 0. (13)

Dans la suite, on souhaite démontrer divers résultats donnés lors de la PC3, sur la
métrique et la possibilité de faire "monter" ou "descendre" les indices. Dans cette
optique, on ne supposera pas connus ces résultats. On supposera uniquement connues
les lois de transformation des composantes d’un tenseur.

a) Expliquer pourquoi 7, est un tenseur deux fois covariant. Montrer que, comme
le suggére la notation, n*” est un tenseur deux fois contravariant.

b) Etant donné un vecteur u*, on note uy, la quantitée définie par
Uy = N’ (14)

Montrer que les w, sont les composantes d'un covecteur (tenseur une fois cova-
riant). On dit ainsi que la métrique permet d’abaisser les indices et on note avec le
méme symbole le vecteur et le covecteur que ’on a fabriqué comme indiqué avant.

c) On considére maintenant un covecteur v, et on définit les quantités v* par
ot =0, (15)

Montrer que les v# sont les composantes d’un vecteur (tenseur une fois contrava-
riant). On dit ainsi que la métrique permet de faire monter les indices.

d) Quel tenseur obtient-on quand on fait monter un indice de la métrique comme
ci-dessous. Méme question si on fait descendre un indice de la métrique inverse ?
Justifier la notation n* pour la métrique inverse.
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17.7. Création de paires

e) On note d,, 'opérateur 9/0z*. Montrer que 'action de cet opérateur sur un tenseur
p fois covariant et g fois contravariant T),,...,,, "1 hermet de fabriquer un tenseur
p + 1 fois covariant et ¢ fois contravariant dont les composantes seront notées
comme indiqué ci-dessous

Ty = Ty, 4 (16)

f) On note O l'opérateur n**9,. Quel est la variance du tenseur

O Ty = Ty 2 (17)

g) On considére le tenseur 4 fois covariant de composantes notées €,,,, qui vérifie
(dans un certain référentiel inertiel)

o (1) Mo (2) Mo (3) o(a) = €(T)€p pnpzpia (18)

pour toute permutation o de signature (o). Montrer que les composantes €50 de
ce tenseur sont les mémes dans tout référentiel inertiel. Cela reste-t-il vrai si on ne
demande pas que les transformations de Lorentz soient orthochrones et propres?

17.7. Création de paires
On considére la réaction ol deux particules donnent un photon

1+2 =9y (19)

a) Montrer que la réaction ci-dessus est impossible si les deux particules ne sont pas
de masse nulles. Conclure que la réaction est impossible.

b) Est-ce qu’un photon peut se désintégrer en deux particules ?

FIGURE 2. — Création d’une pair électron-positron & partir d’un photon.
Le phénomeéne de création de pair v — e~ +e™, fut observées pour la premiére fois

dans la chambre & brouillard de Patrick Blackett, ce qui lui valut le prix Nobel de
Physique en 1948.
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a) Montrer que pour que la réaction de la figure [2| soit permise par les contraintes
cinématiques il est nécessaire qu’elle implique au moins une troisiéme particule

b) Trouver la valeur de I’énergie minimale du photon pour que la réaction aie lieu

17.8. Collision élastique de deux protons

On considére deux protons, I'un (le proton 2), au repos dans un référentiel inertiel
R, a une énergie Ey. Ce proton est heurté par un second proton (proton 1) d’énergie
cinétique zFy dans R. On note R’ le référentiel du centre de masse du systéme. On
note a (respectivement ') Pangle dans R (respectivement dans R’) entre la vitesse
du proton 1 apreés le choc et sa vitesse avant le choc. De méme on note as I'angle dans
R entre la vitesse du proton 2 aprés le choc et la vitesse du proton 1 avant le choc.
On note # I'angle (dans R) entre les vitesse des deux protons aprés le choc. Soit @ la
vitesse du référentiel du centre de masse par rapport a R.

2.1 Montrer que I’énergie cinétique se conserve dans une collision élastique de deux
particules identiques.

2.2 Soit E’ I'énergie du proton incident mesurée dans R’ avant le choc. Exprimer
E'’ en fonction de Ej et z et en déduire I'expression du facteur de Lorentz v du
mouvement de R’ par rapport & R en fonction de x. Application : Calculer
et x pour le LHC ou I’énergie E’ vaut 7 TeV (on prendra la masse du proton
égale a 1 GeV/c?). Comparer ce résultat aux énergies des rayons cosmiques
de "ultra-haute énergies" (1020 eV).

2.3 Montrer que dans R’ les particules conservent individuellement leur énergie et
la norme de leur 3-impulsion.

2.4 Donnez l'expression de 'angle 6 en fonction des énergies cinétiques Kp et Ko
dans R des deux protons aprés le choc.

2.5 Que devient cette formule dans la limite non relativiste ? Méme question dans
la limite ultra-relativiste.

2.6 Exprimer K1, a1, Ko et as en fonction de o/ et v, En déduire une expression
de 6 en fonction de o et 7.

17.9. Effet Tcherenkov

Lorsqu’'une particule chargée traverse un milieu transparent d’indice de réfraction
n tel que la vitesse de la lumiére dans le milieu, ¢ = ¢/n soit inférieure a la vitesse v
de la particule, on constate la production de photons dans le milieu : ¢ — g + ~*.
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17.10. Mouvement dans un potentiel central

e Caractériser les photons v* dans un milieu transparent : déterminer leur masse
carrée mz* et leur vitesse vy« en fonction de la fréquence v et de I'indice n du
m1heuE|. Que vaut le produit cvy« ?

e On se place dans le référentiel du laboratoire, ot le milieu matériel transparent
est au repos.

— Partant des lois de conservation de I’énergie et de 'impulsion dans le milieu
d’indice n, déterminer ’angle maximum d’émission du photon Tcherenkov
par rapport a la direction d’incidence de la particule chargée, Opax, en
fonction de I'énergie E de la particule incidente, de sa masse m et de n,
ou, de maniére équivalente, en fonction de ¢ et de v, (vitesse de la particule
incidente).

— Sous quel angle sont émis les photons Tcherenkov les plus énergétiques ?
Quelle est leur énergie en fonction de E, v, et ¢?

— A quelle énergie seuil de la particule chargée, En, l'effet Tcherenkov
apparait-il 7 Que vaut Op.x a4 cette énergie? Que vaut cet angle a la li-
mite d’énergie infinie ?

— Comment utiliser 'effet Tcherenkov pour mesurer ’énergie des particules

chargées 7

On considére l'effet Tcherenkov produit par des électrons (me. = 0,51 MeV/c?)
traversant I’eau (n &~ 4/3). Déterminer I’énergie minimum de ’électron incident pour
produire un photon Tcherenkov.

17.10. Mouvement dans un potentiel central

Dans une base cartésienne, les composantes du vecteur moment cinétique £ = ¥ X p’
sont

Uy Ypz — 2Dy
by | = | 20z —p2 | - (20)
gz xpy — YPx

ol pz, py et p, sont les moments canoniquement conjugués aux Variablesﬂ z,y etz

a) Vérifier que {{;, ¢y} =1, et {Ei,@} = 0, pour tout i € {z,y, z}.

On montre aisément que {{,,¢,} = £, et {Ex,p} = {Zy,ﬁ_?} = {Ei,lm} =0, Vi.

En I’absence de champ magnétique, p'= ma est la quantité de mouvement.

1. Rappel : E,~ = hv, py= = h/X et Av =¢.

2. Noter que pz, py et p. ne s’identifient pas nécessairement aux moments généralisés adoptés
pour étudier le probléme. Ces derniers sont canoniquement conjugués aux coordonnées généralisées
choisies qui ne sont pas forcément des coordonnées cartésiennes.
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On définit les coordonnées sphériques au moyen des relations suivantes :
x=rsinfcosy, y=rsinfsing, z=rcosb. (21)

Dans la suite, on adoptera ce systéme de coordonnées.

b) Ecrire la fonction de Lagrange décrivant le mouvement d'un corps de masse m
dans un champ de force dérivant d’un potentiel & symétrie sphérique. Déterminer
les moments généralisés et déduire la fonction d’Hamilton.

c) Exprimer £, ¢, £, ainsi que 2 en fonction des variables d’état 7,9, et pr, Dy, Pp-
d) Montrer que {{;,¢,} = ¢, et {KI,Z—?} = {Ky,tm} = {Ezjg} =0.

e) Des relations {&,52} =0, déduire que {¢;, H} = {{,, H} = {{;, H} = {@’H} =
0, pour tout ¢ € {z,y,z}. Cette propriété refléte I'invariance par rotation et la
conservation du moment cinétique.

f) Dans le cas o la symétrie par rotation serait brisée, combien de composantes du
moment cinétique pourraient satisfaire {¢;, H} =07

L’analyse qui précéde permet de tirer des conclusions déterminantes sur la nature
de la trajectoire d’un corps dans un potentiel central :

d) Sans autre développement technique, montrer que la trajectoire est toujours située
dans un plan qui passe par l'origine, centre du champ de force.

e) Montrer que le probléme se réduit la dynamique d’un particule & une dimension
dans un potentiel effectif que I'on interprétera.

f) Peut-on effectuer une transformation canonique telle que ¢, ¢, et £, soient les
variables de moment dans l’espace des phases?

Adoptons p,, £, et £ = HZ H pour moments généralisés. Les coordonnées canoniquement
conjuguées seront 7,y et .

i) Par transformation de Legendre, déterminer la fonction de Lagrange et interpréter
les nouvelles coordonnées y et . Quel est le role du moment £, 7

j) Démontrer la seconde loi de Kepler — conservation de la vitesse aréolaire.

Le probléme est finalement réduit & deux dimensions.

k) Trouver une nouvelle intégrale premiére et intégrer les équations par quadratures.
1) Identifier un potentiel de force effectif et interpréter ses différents termes.

m) Décrire qualitativement l’extension des trajectoires dans la direction radiale, en
particulier si V' = —k/r (probléme de Coulomb ou probléme de Kepler).
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17.11. Le paradoxe de la perche et du hangar

17.11. Le paradoxe de la perche et du hangar

Un étudiant est perplexe et écrit « La relativité doit étre fausse. Considérons un
perche de 20 métres de long transportée si rapidement dans la direction qui lui est
paralléle qu’elle ne parait plus avoir que 10 métres de long dans le systéme du la-
boratoire. A un moment donné, on peut donc la faire entrer toute entiére dans un
hangar de 10 métres de long. Plagons-nous cependant dans le systéme de référence
du coureur qui la porte. Pour lui, le hangar est contracté & la moitié de sa longueur.
Comment un perche de 20 métres pourrait-elle entrer dans un hangar de 5 métres 7 Et
cette conclusion impossible a retenir ne démontre-t-elle pas que la relativité renferme
quelque part une faille logique fondamentale 7 ».

Expliquer clairement et en détails comment faire entrer la perche et le hangar dans
la théorie de la relativité sans qu’il en résulte de contradiction.

Pour cela on tracera les diagrammes d’espace-temps pour le porteur et pour le
hangar.

17.11.1. Solution

Le facteur de contraction de Lorentz est de 2, v =2 =1/4/1 — /2. Donc la vitesse
relative entre les 2 référentiels est de 3, = \/§/ 2. On peut donc tracer les diagrammes
d’espace-temps suivants

t P arriére perche t
arriére perche ,,/ /,/ avant perche avant perche
| t = 40 - arrierd hangar
arriére hangar ,«/ // V3 N 10
,«/ ,«/ avant hangar avant hangar™. | V3
—10 0 10 —920 0
réf hangar réf porteur

On résout donc ce paradoxe de la maniére suivante : dans le référentiel du porteur,
I’avant de la perche quitte le hangar avant que 'arriére n’entre dans le hangar. Ainsi
le porteur n’observe jamais que la perche est contenu dans le hangar.

17.12. Objets de déplacant plus vite que la lumiére

faire le dessin de la regle

Les équations de transformations de Lorentz n’ont plus aucune signification si la
vitesse relative des deux systémes de référence est supérieure & celle de la lumiére.
Ceci implique que la masse, I'énergie et 'information ne peuvent étre transmises d’un
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endroit & I'autre plus vite que la vitesse de la lumiére. Vérifier cette implication pour
les exemples suivants.

2)

d)

Le paradoxe des ciseaux. Une trés longue baguette droite fait une angle ® avec
I'axe Oz et se déplace vers le bas & une vitesse uniforme gY. Trouver la vitesse du
point d’intersection du bord inférieur de la baguette avec I'axe Ox. Peut-elle étre
supérieure a la vitesse de la lumiére ? Peut-elle servir a transmettre un message de
I’origine & un point éloigné de I'axe Ox.

Admettons que la méme baguette soit initialement au repos et que le point d’in-
tersection A soit confondu avec l'origine. On frappe la zone de la baguette qui est
voisine de l'origine avec un marteau qui va de haut en bas. Le point d’intersec-
tion se déplace vers la droite. Peut-on utiliser ce mouvement pour transmettre un
message a une vitesse supérieure a celle de la lumiére ?

On fait tourner rapidement un projecteur trés puissant de telle facon que son
faisceau décrive un plan. Les observateur A et B sont placés dans ce plan et a la
méme distance du projecteur, mais relativement éloignés I'un de 'autre. A quelle
distance du projecteur doivent se trouver A et B pour que le faisceau balaye le
plan de A vers B plus vite qu’'un signal lumineux émis et recu entre les deux
mémes points 7 Avant de gagner leurs positions, les deux observateurs ont recu les
instructions suivantes :

i) Pour A : Quand vous verrez le faisceau du projecteur, tirez un balle en direc-
tion de B

ii) Pour B : Quand vous verrez le faisceau lumineux, plongez parce que A vous
aura tiré dessus.

Dans ces conditions, I'alarme ne passera-t-elle pas de A a4 B plus vite que la

lumiére 7

Les constructeurs de certains oscilloscopes prétendent enregistrer des vitesses su-
périeures & celle de la lumiére. Est-ce possible ?

17.12.1. Correction

a)

Quand la régle bouge d’une distance Ay = Y At, le point A bouge d’une distance
Az = Ay/tan® = (Y At/tan ®. La vitesse du point d’intersection A est donc
Ba = Ax/At = pY/tan ®. Pour toutes valeurs de Y on peut toujours choisir ®
suffisamment faible pour que 84 > 1 donc que A bouge plus vite que la vitesse de
la lumiére. Mais ce point ne contient pas d’information physique, pas plus qu’un
message est échangé par deux horloges programmeées pour sonner & un intervalle de
temps tel que la lumiére ne peut voyager entre ces deux horloges. Dans I'exemple
décrit ici, la régle doit étre accélérée pendant une période de temps trés longue
pour atteindre la vitesse voulue. Et 'observateur a 1’origine n’a pas la possibilité
de transmettre de 'information sur 'axe Ozx.
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b) Dans ce cas le point d’intersection peut bouger vers la droite & une vitesse inférieure
ou égale a la vitesse du son dans la régle. C’est une vitesse trés inférieure a celle
de la lumiére.

¢) Soit w la vitesse angulaire, exprimée en radians par seconde, du projecteur. Pour
que le faisceau aille plus vite de la lumiére il faut que

wr > c

L’alarme n’a pas pu aller de A vers B, car on peut pas transmettre de signal plus
vite que la vitesse de la lumiére.

d) Oui, il est possible de mesurer des vitesses supérieures a celles de la lumiére comme
pour le cas du faisceau du projecteur.

17.12.2. Contexte physique

Des exemple de propagation apparente plus vite que la vitesse de la lumiére sont
observables en astrophysique avec les jets de matiére émis par les galaxie.

Par exemple voici les images prises par le télescope Hubble de la propagation du
jet émit par la galaxie M87 observé sur plusieurs années.
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