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The detection of gravitational waves emitted by
binary systems has opened a new astronomical
window into the Universe. We describe recent
advances in the field of scattering amplitudes
applied to the post-Minkowskian expansion, and
the extraction of the effective two-body gravitational
potential. The techniques presented here apply to any
effective field theory of gravity and are not restricted
to four-dimensional Einstein gravity.

This article is part of the theme issue ‘The future of
mathematical cosmology, Volume 2’.

1. Motivation
Our conception of the force of gravity conditions our
vision of the shape and dynamic of our Universe.
The current cosmological paradigm relies on General
Relativity, Einstein’s theory of gravity formulated as a
relativistic theory of curved space–time, which posits
that the force of gravity is universal as it couples to all
types of matter and energy at all scales. But General
Relativity fails to explain the observed dynamics and
stability of the galaxies or the accelerated expansion
of our Universe. Dark matter, and dark energy of
unknown nature, have been introduced to quantify our
lack of understanding. The recent tension in the value
for the acceleration rate of our Universe [1], between
the local astrophysical measurements and from the
cosmic microwave background, is a strong invitation
to consider modifications of the law of gravity over
large astrophysical scales. Because gravity is the weakest
of all forces, direct detection of gravitational effects is
very challenging. For a long time, there was a huge
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observational gap in the scales where gravity could be measured with precision between the
solar system range and the cosmological range. This has now changed thanks to the detection of
gravitational waves.

The landmark detection of gravitational waves by the LIGO and Virgo collaborations gives
information about gravity at an intermediate scale in our Universe. We then have new tools
to learn about physics in the extreme gravity environment of coalescing binary black holes or
neutron stars, to confront the predictions of Einstein’s theory of gravity, and to search for new
physics.

The detection of the first gravitational-wave signal has opened an area of precision gravity. The
gravitational-wave signals can tell us about gravity at various scales, involving the dynamics
of black holes. Ultimately, this would tell us how well we understand gravity both in the
weak and strong coupling regimes. The binary mergers detected until now by the LIGO–Virgo
[2,3] collaboration are clean sources of gravitational waves and the gravitational-wave signal
is currently modelled by general relativity in vacuum, at accuracy close to second order in
the mass ratio parameter. The next-generation gravitational-wave detectors, such as the Laser
Interferometer Space Antenna (LISA), will be influenced by the environment of the sources and
the signal will be more ‘dirty’ [4]. The lack of clear predictions for nonlinearities (from the
accretion disc, for instance) in the post-merger phase means that these could be confused with
modifications of the signal predicted by theories beyond general relativity.

The profile of the wave depends on the physics of the mergers and how the waves have
propagated in space. There are three typical regimes for the merger: (a) the inspiral phase when
the two binaries are far apart with relatively slow motion and weak gravitational interaction,
(b) the merger phase in the strong gravity regime and (c) the final ring-down phase where
the final state of the system is relaxing. After the binary system has merged into the final
black hole, the ring-down phase tells us about the structure of the horizon of the black hole.
We estimate that there are more than 100 million black holes in our galaxy and 100 billion
supermassive black holes in our Universe. These numbers indicate the potential of gravitational-
wave detections from black-hole binary mergers at intermediate distances in our Universe. For
neutron star binary mergers, one can compare the propagation of the gravitational waves to the
radio signals and visible emissions. The analysis of gravitational waves will allow for precision
tests of General Relativity, and of the black-hole paradigm itself. The combined gravitational
waves and electromagnetic signals will allow us to pin down the properties of the binary and
its environment. The recently enhanced observatories (LIGO, Virgo and KAGRA) and the vastly
improved sensitivity of the third generation of gravitational-wave observatories, the Einstein
Telescope and the Cosmic Explorer, and the future space-based LISA, [4,5] will permit detailed
measurements of the sources’ physical parameters and will complement, in a multi-messenger
approach, the observation of signals emitted by cosmological sources obtained through other
kinds of telescopes.

‘We wouldn’t call it a tension or a problem, but rather a crisis’, commented the Nobel prize
winner David Gross, about the different measurements of the expansion rate of the Universe from
local and cosmological observations [6]. The signal contains information about the sources and
how the gravitational waves have propagated in space and time until their detection on Earth.
The knowledge of the mass distribution of sources of gravitational waves can be used to infer
cosmological parameters in the absence of redshift measurements obtained from electromagnetic
observations [7–9].

Black holes, compact stars and gravitational waves are among the most spectacular predictions
of general relativity. It is therefore natural to use them as probes of the most fundamental
principles of Einstein’s theory [10,11]. The gravitational-wave events are constrained by a plethora
of mechanisms associated with the generation and propagation of gravitational waves, including
the activation of scalar fields [12], gravitational leakage into large extra dimensions [13], the
variability of Newton’s constant [14,15], the speed of gravitational waves, their propagation [16],
gravitational Lorentz violation and the strong equivalence principle [17] and higher-derivative
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corrections [18]. The LIGO Scientific Collaboration and the Virgo Collaboration have verified
that the observations are consistent with Einstein’s theory of gravity, constraining the presence
of certain parametric anomalies in the signal [9]. However, the true potential for gravitational-
wave detections to both rule out exotic objects and constrain physics beyond General Relativity
is severely limited by the lack of understanding of the coalescence regime in almost all relevant
modified gravity theories.

Current predictions for gravitational-wave signals are based on a variety of complementary
theoretical approaches: the weak field and small velocity expansion in the inspiral regime,
numerical relativity for the merger and the quasi-normal modes for the relaxation of the
final black hole. They have been used for analysing successful detections, but they have their
limitations. Astrophysical evidence suggests that black holes can have a variety of intrinsic
angular momenta, including close to maximally allowed values. The presence of spin can lead
to qualitative changes in the dynamics of a binary system, such as the orbital-plane precession
when the spins are not aligned with the orbital angular momentum. Such an effect would
lead, in particular, to a modulation of the amplitude, frequency and phase of the observed
gravitational-wave signal.

For this, we need to produce accurate theoretical gravitational waveform templates. We have
to clarify how much can be understood from exact theoretical computations. We have to answer
the questions about how much we understand gravity in the weak and strong coupling regimes.
And whether we can learn about gravitational physics beyond Einstein gravity, like modified
gravity scenarios (extra dimensions, massive gravity, etc.), or quantum effects.

The detected gravitational waves are classical, but in parallel to the other forces of Nature
one assumes the existence of a massless particle, the graviton, which carries the force of gravity.
The quantum gravity effects have been elusive so far although they play a fundamental role
in our understanding of cosmology and the nature of black holes. There are indications that
gravitational-wave spectroscopy could provide a way to test some paradigms for the microscopic
description of a black hole, like the ‘fuzzball’ scenario [19], and lead to a better understanding of
the early time cosmology and the inflationary scenario [9].

Although the status of the high-energy behaviour of quantum gravity is still open, considering
effective field theory of gravity at low energy does not pose a problem. One can safely extract
low-energy physics from the quantization of the gravitational interactions observables that
are independent of the high-energy behaviour. In this context, it is important to work with
gravity effective field theories [20–24]. There are the classical contributions (post-Minkowskian
expansion) but also infra-red effects which depend only on the low-energy degrees of freedom.
As argued by Bjorken [25] [· · · ] as an open theory, quantum gravity is arguably our best quantum
field theory, not the worst.

In the present text, I review the approach for evaluating classical gravity observables from a
quantum S-matrix approach developed in the works [26–33].

2. Classical gravitational scattering from quantum scattering
Einstein’s theory of gravity is the first term of an effective field theory coupling gravity to matter

S =
∫

d4x
√−g

[
R

16πGN
+ gμνTmatter

μν + Lcorrections

]
. (2.1)

We assume that the effective field theory satisfies the standard requirements of locality, unitarity
and Lorentz invariance, and of course that the theory is diffeomorphism invariant (i.e. we have the
symmetries of general relativity). The low-energy degrees of freedom are the massless graviton
and the usual massive matter fields.
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We are interested in extracting physical observables from the gravitational interactions1

between two massive body of masses mi and spin Si with i = 1, 2 interacting via the exchange of
massless spin-2 graviton [36–40]. The two-body scattering matrix can be expanded in perturbation

p1

p¢1 p¢2

p2

M(p1, p2, p¢1, p¢2) = =
∞∑

L = 0
GN

L+1   ML (γ, q2) (2.2)

The quantum scattering matrix M(p1, p2, p′
1, p′

2) depends on the incoming energy γ := p1 ·
p2/(m1m2), the momentum transfer (p1 − p′

1)2 =: q2 and h̄. At a given order in perturbation one
gets the exchange of gravitons (curly lines) between massive external matters (solid lines)

p2, m2, S2 

p1, m1, S1 p¢1, m1, S1 

p¢2, m2, S2 

A traditional argument (see for instance [41]) gives that the L-loop contribution is of order
ML(γ , q2) =O(h̄L−1). A different behaviour emerges when keeping fixed the wave-number q =
q/h̄ and taking both the h̄ → 0 and the small momentum transfer q → 0 limit [27,42,43]. The L-loop
two-body scattering amplitude has the Laurent expansion around four dimensions

ML(γ , q2, h̄) = 1

h̄L−1|q|(L(4−D)/2)

∑
r≥−2

(h̄|q|)rM(−L+1+r)
L (γ , q2). (2.3)

The classical piece of the amplitude that will contribute to the classical interactions depicted in
the above figure is the contribution of order 1/h̄

ML(γ , q, h̄) =
M(−L−1)

L (γ , q2)

h̄L+1|q|(L(4−D)/2)+2
+ · · · +

M(−1)
L (γ , q2)

h̄|q|(L(4−D)/2)+2−L
+ O(h̄0). (2.4)

The full quantum amplitude contains three types of contributions: (1) the term of order 1/h̄r with
L + 2 ≤ r ≤ 2 that are more singular than the classical piece, (2) the classical piece of order 1/h̄ and
(3) the quantum corrections of order h̄r with r ≥ 0. All these contributions are constrained by the
unitarity of the S-matrix as we will explain in §2(b).

The scattering amplitude approach completes the post-Newtonian computations by providing
information beyond its regime of validity and leads to surprising results connecting the
conservative part and gravitational radiation effects [28,44–50]. It gives a new perspective on
the traditional methods [21,22,51–53] used for computing the gravitational-wave templates. This
approach allows the re-summed post-Newtonian results [23,54,55] and the high-energy behaviour
[49,56] to be connected. We can then explore the behaviour of the post-Minkowskian expansion
for higher-dimensional gravity. One can also consider higher derivative corrections induced from
string theory for instance, and study their effects on the gravitational-wave signals [57–59] or
various quantum effects [26] induced from the higher-order terms in the h̄ expansion in (2.4).

For gravitational-wave physics, we need to extract the classical potential from the knowledge
of the quantum scattering amplitudes. One wants to extract the classical Hamiltonian HPM(p, r)

1One could also include electro-magnetic interactions as considered in [34] or standard model contributions as in e.g. [35] but
here we will only consider the exchange of the graviton and focus on the gravitational sector.
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for the gravitational interactions between two classical massive bodies

HPM(r, p) =
√

p2 + m2
1 +

√
p2 + m2

2 +
∑
L≥0

GL+1
N VL+1(r, p). (2.5)

The relativistic potential VL+1-PM(p, r) =∑
n≥0 cL,nvn, with p = p1 − p′

1 = (E, v), sums an infinite
number of post-Newtonian contributions in the small velocity expansion v/c � 1.

(a) The eikonal formalism
One route for relating the potential VL+1 to the scattering amplitude ML is to use the eikonal
formalism for extracting the classical scattering angle χ from the quantum scattering amplitude
calculation. For this, one converts the amplitude to the b-space2 by performing a Fourier
transform with respect to the momentum transfer

ML(γ , b) = 1

4m1m2
√

γ 2 − 1

∫
RD−2

dD−2q

(2π )D−2 ML(p1, p2, p′
1, p′

2) eiq·b. (2.6)

The classical eikonal phase δ(γ , b) is defined by the exponentiation of the S-matrix

1 + iT = (1 + i2�) e(2iδ(γ ,b)/h̄). (2.7)

The eikonal phase has the perturbation expansion

δ(γ , b) =
∑
L≥0

δL(γ , b)GL+1
N , (2.8)

which is then connected to the h̄ Laurent expansion of the scattering amplitude in (2.4), through
the expansion of the full scattering matrix in b-space

1 + iT = 1 + i
∑
L≥0

GL+1
N ML(γ , b). (2.9)

Having determined the classical eikonal contribution at a given loop order one can then evaluate
the scattering angle at this order in perturbation [28,29,47,49]

sin
(χ

2

)∣∣∣
L

= −
√

(p1 + p2)2

m1m2
√

γ 2 − 1

∂δL(γ , b)
∂b

. (2.10)

And from the scattering angle, one reconstructs the classical potential VL+1(r, p) in (2.5) by
matching the expression for the angle from the Hamilton–Jacobi formalism [60,61]. The scattering
angle is the main link for connecting the scattering amplitudes to the dynamics of the two-body
system. It has been derived in many independent methods in different regimes [23,47–50,62–65].

Unfortunately, this approach leads to complicated computations. In the first place, the eikonal
exponentiation in (2.7) is obtained after a careful separation, order by order, of the various terms
that go into the exponent and those terms that remain as prefactors at the linear level. A second
complication is that after exponentiation in impact-parameter space one must apply the inverse
transformation and seek from it two crucial ingredients: (1) the correct identification of the
transverse momentum transfer q in the centre-of-mass frame and (2) the correct identification
of the scattering angle from the saddle point. At low orders in the eikonal expansion, this
procedure works well but it hinges on the impact-parameter transformation being able to undo
the convolution product of the momentum-space representation. When q2-corrections are taken
into account it is well known that this procedure requires amendments. This explains why
alternative pathways are rooted in the WKB approximation [30,55,66].

2This is not the impact parameter bJ orthogonal to the asymptotic momentum in the centre-of-mass frame. The relationship
between the two quantities is bJ = b cos(χ/2) [47,49].
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(b) An exponential representation of the S-matrix
The Hamilton–Jacobi equations applied to the principal function

S(r, ϕ; E, J) = Jϕ +
∫

pr(r; E, J) dr, (2.11)

leads to the radial action in the post-Minkowskian expansion [60]

Iradial(E, J) =
∮

pr(r; E, J) dr. (2.12)

In [55] a relationship has been proposed between the scattering amplitude and the radial action
(see [66] for the probe limit case)

iM∝
∫

(eiIradial(E,J) − 1)dJ. (2.13)

This relation looks similar to the eikonal approach described in the previous section, but the
systematic of the effective field theory approach, applied to the potential region [55], makes the
evaluation of the classical contributions more efficient.

Another approach, introduced in [30], uses an exponential representation of the S-matrix at
the operator level

Ŝ = I + i
h̄

T̂ = exp

(
iN̂
h̄

)
, (2.14)

with the completeness relation

I =
∞∑

n=0

1
n!

∫ 2∏
i=1

dD−1ki

(2π h̄)D−1
1

2Ek1

n∏
j=1

dD−1
j

(2π h̄)D−1
1

2E
j

|k1, k2; 
1, . . . 
n〉 〈k1, k2; 
1, . . . 
n| , (2.15)

which includes all the exchange of gravitons for n ≥ 1 entering the radiation-reaction
contributions N̂rad. With this exponential representation of the S-matrix, we systematically relate
matrix elements of the operator in the exponential N̂ to ordinary Born amplitudes minus pieces
provided by unitarity cuts [30]. This is seen by the perturbation expansion

N̂0 = T̂0, N̂rad
0 = T̂rad

0 ,

N̂1 = T̂1 − i
2h̄

T̂2
0, N̂rad

1 = T̂rad
1 − i

2h̄
(T̂0T̂rad

0 + T̂rad
0 T̂0)

and N̂2 = T̂2 − i
2h̄

(T̂rad
0 )2 − i

2h̄
(T̂0T̂1 + T̂1T̂0) − 1

3h̄2 T̂3
0,

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(2.16)

and similarly for higher orders. The simplicity of this method seems very appealing and suggests
that it may be used to streamline post-Minkowskian amplitudes in gravity by means of a
diagrammatic technique that systematically avoids the evaluation of the cut diagrams that
must be subtracted, but simply discards them at the integrand level. This decomposition is in
correspondence with the 1/h̄|q| expansion of the scattering amplitude in (2.4). The scattering

matrix operator T̂ is related to the scattering amplitude ML ∝ 1/h̄〈p1, p2|T̂L|p′
1, p′

2〉. The tree-
level matrix element for the two-body scattering M0 ∝ 1/h̄〈p1, p2|T̂0|p′

1, p′
2〉 is of order O(1/h̄). At

one-loop order amplitude decomposes into two pieces

M1 ∝ 1
h̄
〈p1, p2|T̂1|p′

1, p′
2〉 ∝ 1

h̄
〈p1, p2|N̂1|p′

1, p′
2〉 + i

2h̄2 〈p1, p2|T̂2
0|p′

1, p′
2〉. (2.17)

By unitarity the coefficient of the O(1/h̄2) contribution in the scattering amplitude is
〈p1, p2|T̂2

0|p′
1, p′

2〉, and the matrix element 〈p1, p2|N̂1|p′
1, p′

2〉 given by the classical piece is of order
O(1/h̄). Therefore, for the classical two-body scattering only the matrix elements of N̂ are needed.
They are extracted from the scattering amplitude by the velocity cuts introduced recently [28,29]
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which are a practical way of realizing the decomposition (2.17) at the amplitude level. These
velocity cuts provide a natural way to organize amplitude calculations [67].

By construction, the scattering angle is reproduced in perturbation theory. The completeness
relation implies that the two-body scattering contains the multi-graviton exchanges. Therefore,
the result is not limited to what is known as the potential region of the multi-loop amplitudes
[23,54,55] but includes also radiation reaction pieces [28,29,48,49,56].

(c) The classical effective potential from a Lippmann–Schwinger approach
It is a classical problem in perturbation scattering theory to relate the scattering amplitude M
to an interaction potential V . This is typically phrased in terms of non-relativistic quantum
mechanics, but it is readily generalized to the relativistic case. Crucial in this respect is the fact
that we shall consider particle solutions to the relativistic equations only. There will thus be,
in the language of old-fashioned (time-ordered) perturbation theory, no back-tracking diagrams
corresponding to multi-particle intermediate states. This is trivially so since we neither wish to
treat the macroscopic classical objects such as heavy neutron stars as indistinguishable particles
with their corresponding antiparticles nor do we wish to probe the scattering process in any
potential annihilation channel. The classical objects that scatter will always be restricted to
classical distance scales.

In the Lippman–Schwinger [68] approach, the classical piece in the quantum scattering
amplitude M and the V are recursively related by

M(p, p′) = V(p, p′) +
∫

d3k
(2π )3

V(p, k)M(k, p′)
Ep − Ek + iε

, (2.18)

in the centre-of-mass frame with p1 = (E1, p), p′
1 = (E1, p′), p2 = (E2, −p) and p′

2 = (E2, −p′). The
position space potential V(r, p) is obtained after Fourier transform

V(r, p) =
∫

d3q
(2π )3 eiq·rV(p, q). (2.19)

This framework is a relativistic extension, through a one-particle Hamiltonian and associated
Salpeter equation, of the conventional approach to determining the interaction potential in
perturbation gravity. The Lippmann–Schwinger equations are used to derive straightforwardly
the needed Born subtractions at arbitrary loop order. We remark that the EFT approach of [23,24]
is a Lippman–Schwinger approach applied to the potential region of the two-body scattering.

The resulting post-Minkowskian Salpeter equation is not an effective low-energy theory
(momentum is not limited), but rather a small |q|/m approximation where small momentum is
exchanged and only particle states are summed over. Although systematic, this approach leads
to rather cumbersome computations. A more direct way of deriving the effective potential is to
connect the potential to the scattering angle.

(d) The effective one-body formalism
One route to connect the scattering regime to the bound-state regime is based on the effective
one-body (EOB) formalism [69,70], suitably adapted from post-Newtonian to post-Minkowskian
formulations [33,44,45,60].

One important lesson from the scattering amplitude approach to gravitational scattering in
general relativity is that at least up to and including third post-Minkowskian order, there exists,
in isotropic coordinates, a very simple relationship between centre-of-mass momentum p and the
effective classical potential Veff(r, p) of the form [61]

p2 = p2
∞ − Veff(r, E) and Veff(r, E) = −

∑
n≥1

fn

(
GN(m1 + m2)

r

)n
(2.20)
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where the coefficients fn are directly extracted from the scattering angle

χ =
∑
k≥1

2b
k!

∫∞

0
du
(

d
du2

)k
⎡⎢⎣ 1

u2 + b2

⎛⎝Veff

(√
u2 + b2

)
(u2 + b2)

γ 2 − 1

⎞⎠k⎤⎥⎦ . (2.21)

By computing the two-body scattering in perturbation one derives a Lorentz invariant
expression valid in all regimes of relative velocity between the two interacting massive bodies.
Importantly, the relation between the scattering amplitude and the EOB Effective potential in
(2.21) is valid in any space-time dimension and applies to gravity in higher dimensions [71,72].

3. The Schwarzschild–Tangherlini black holes
The Nobel prize citation for Roger Penrose states that ‘black-hole formation is a robust prediction
of the general theory of relativity’. Subrahmanyan Chandrasekhar explained that they are the
most perfect macroscopic objects there are in the Universe since the only elements in their
construction are our concepts of space and time. Black-hole solutions are a perfect playground
to validate the formalism of deriving classical gravity from quantum scattering amplitudes. This
also opens new avenues for studying black holes in generalized theories of gravity.

In 1973, Duff analysed [73] the question of the classical limit of quantum gravity by extracting
the Schwarzschild black-hole metric from quantum tree graphs to G3

N order. This was a
consistency check on the way classical Einstein’s gravity is embedded into the standard massless
spin-2 quantization of the gravitational interactions.

Considering the importance of the Schwarzschild black-hole metric solution both for
observation and theoretical considerations, we present a derivation of this metric from a scattering
amplitude approach.

By evaluating the vertex function of the emission of a graviton from a particle of mass m, spin
S and charge Q, in d dimensions

p¢1

p1

q
= −i

√
32p GN

2

∑

l ≥ 0
〈T (l) mn (q2)〉εmn (3.1)

one can extract the metric of physical black holes [74]

— Schwarzschild black hole: Scalar field S = 0, mass m [31,75–77]
— Reissner–Nordström black hole: Scalar field S = 0, charge Q, mass m [34]
— Kerr–Newman black hole: Fermionic field S = 1/2, charge Q, mass m [34,77]

At each loop order, we extract the l-loop contribution to the transition density of the stress-energy
tensor 〈Tμν (q2)〉 =∑

l≥0〈T(l)
μν (q2)〉

iM(l)
3 (p1, q) = − i

√
32πGN

2
〈T(l) μν (q2)〉εμν , (3.2)

where εμν is the polarization of the graviton and momentum q = p1 − p2 is the momentum
transfer. The relationship between the metric perturbation and the stress-energy tensor reads

h(l+1)
μν (x) = −16πGN

∫
dD−1q
(2π )d

eiq·x 1
q2

(
〈T(l)

μν〉class.(q2) − 1
d − 1

ημν〈T(l)〉class.(q2)
)

. (3.3)
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In this relation the classical contribution at l loop order 〈T(l)
μν〉class.(q2) is defined by the classical

limit of the quantum scattering amplitude [27,42,43].
In [31], the Schwarzschild–Tangherlini metric up to G4

N was obtained in four, five and six
dimensions. The amplitude computation contains quantum corrections that are induced from
the higher orders in the h̄ expansion. These corrections can be included in the metric [34,77].

4. Discussion
General relativity can be considered in space–times of various dimensions. Gravity is richer in
higher dimensions as black-hole solutions develop non-trivial properties in general dimensions
[78,79]. It is therefore important to validate our current understanding of the connection between
the quantum scattering amplitudes and classical general relativity in general dimensions [71,72].
By reproducing the classical Schwarzschild–Tangherlini metric from scattering amplitudes in
four, five and six dimensions, we validate the procedure for extracting the classical piece from the
quantum scattering amplitudes. The method can be applied to derive other black-hole metrics,
like the Kerr–Newman and Reissner–Nordström metrics by considering the vertex function of
the emission of the graviton from a massive particle with spin and charge [34,77,80–85].

The scattering amplitude approach presented in this work can be applied to any effective
field theory of gravity coupled to matter fields. One can include quantum corrections in (3.3)
and examine the impact of quantum effects on the black-hole solutions [77], the effects of
modified gravity models [86] or study the impact of higher derivative contributions [57–59] to
the gravitational-wave templates.

The amplitude computations, being performed in general dimensions, lead to results that
have an analytic dependence on the space–time dimensions. It is remarkable that in this
approach classical gravity physics contributions are determined by unitarity of the quantum
amplitudes [27].

We have improved our understanding of the relation between general relativity and the
quantum theory of gravity. This leads to many new exciting developments and a better
understanding of the gravitational interactions in a binary system. This provides new techniques
that can be applied to any gravitational effective field theories which have amplitude description:
opening the possibility to search for deviation from Einstein gravity.
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